


Wie können OpenCV und SVM für eine effiziente Bildklassifizierung verwendet werden?
Verwendung von OpenCV und SVM zur Klassifizierung von Bildern
Um OpenCV und SVM für die Bildklassifizierung zu verwenden, müssen eine Reihe von Schritten unternommen werden. Zunächst muss eine Trainingsmatrix erstellt werden, die aus den aus jedem Bild extrahierten Merkmalen besteht. Diese Matrix wird gebildet, wobei jede Zeile ein Bild darstellt, während jede Spalte einem Merkmal dieses Bildes entspricht. Da die Bilder zweidimensional sind, ist es notwendig, sie in eine eindimensionale Matrix umzuwandeln. Die Länge jeder Zeile entspricht der Fläche des Bildes, die über alle Bilder hinweg konsistent sein muss.
Wenn beispielsweise fünf 4x3-Pixel-Bilder für das Training verwendet werden, wird eine Trainingsmatrix mit 5 Zeilen (eine für jedes Bild) und 12 Spalten (3x4 = 12) sind erforderlich. Während des „Auffüllens“ jeder Zeile mit Daten aus dem entsprechenden Bild wird eine Zuordnung verwendet, um jedes Element der 2D-Bildmatrix seiner spezifischen Position in der entsprechenden Zeile der Trainingsmatrix zuzuordnen.
Gleichzeitig wird Für jedes Trainingsbild müssen Beschriftungen erstellt werden. Dies erfolgt mithilfe einer eindimensionalen Matrix, wobei jedes Element einer Zeile in der zweidimensionalen Trainingsmatrix entspricht. Werte können zugewiesen werden, um verschiedene Klassen darzustellen (z. B. -1 für Nicht-Auge und 1 für Auge). Diese Werte können innerhalb der Schleife zur Auswertung jedes Bildes unter Berücksichtigung der Verzeichnisstruktur der Trainingsdaten festgelegt werden.
Nach dem Erstellen der Trainingsmatrix und der Beschriftungen müssen die SVM-Parameter konfiguriert werden. Ein CvSVMParams-Objekt wird deklariert und bestimmte Werte werden festgelegt, z. B. svm_type und kernel_type. Diese Parameter können je nach Projektanforderungen variiert werden, wie in der OpenCV-Einführung in Support Vector Machines vorgeschlagen.
Mit den konfigurierten Parametern wird ein CvSVM-Objekt erstellt und anhand der bereitgestellten Daten trainiert. Abhängig von der Größe des Datensatzes kann dieser Vorgang zeitaufwändig sein. Sobald das Training jedoch abgeschlossen ist, kann die trainierte SVM für die zukünftige Verwendung gespeichert werden, sodass nicht jedes Mal eine erneute Schulung erforderlich ist.
Um Bilder mithilfe der trainierten SVM auszuwerten, wird ein Bild gelesen und in ein eindimensionales umgewandelt Matrix erstellt und an svm.predict() übergeben. Diese Funktion gibt einen Wert zurück, der auf den während des Trainings zugewiesenen Beschriftungen basiert. Alternativ können mehrere Bilder gleichzeitig ausgewertet werden, indem eine Matrix im gleichen Format wie die zuvor definierte Trainingsmatrix erstellt und als Argument übergeben wird. In solchen Fällen wird von svm.predict() ein anderer Rückgabewert erzeugt.
Das obige ist der detaillierte Inhalt vonWie können OpenCV und SVM für eine effiziente Bildklassifizierung verwendet werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Geschichte und Entwicklung von C# und C sind einzigartig, und auch die Zukunftsaussichten sind unterschiedlich. 1.C wurde 1983 von Bjarnestrustrup erfunden, um eine objektorientierte Programmierung in die C-Sprache einzuführen. Sein Evolutionsprozess umfasst mehrere Standardisierungen, z. B. C 11 Einführung von Auto-Keywords und Lambda-Ausdrücken, C 20 Einführung von Konzepten und Coroutinen und sich in Zukunft auf Leistung und Programme auf Systemebene konzentrieren. 2.C# wurde von Microsoft im Jahr 2000 veröffentlicht. Durch die Kombination der Vorteile von C und Java konzentriert sich seine Entwicklung auf Einfachheit und Produktivität. Zum Beispiel führte C#2.0 Generics und C#5.0 ein, die eine asynchrone Programmierung eingeführt haben, die sich in Zukunft auf die Produktivität und das Cloud -Computing der Entwickler konzentrieren.

Es gibt signifikante Unterschiede in den Lernkurven von C# und C- und Entwicklererfahrung. 1) Die Lernkurve von C# ist relativ flach und für rasche Entwicklung und Anwendungen auf Unternehmensebene geeignet. 2) Die Lernkurve von C ist steil und für Steuerszenarien mit hoher Leistung und niedrigem Level geeignet.

Die Anwendung der statischen Analyse in C umfasst hauptsächlich das Erkennen von Problemen mit Speicherverwaltung, das Überprüfen von Code -Logikfehlern und die Verbesserung der Codesicherheit. 1) Statische Analyse kann Probleme wie Speicherlecks, Doppelfreisetzungen und nicht initialisierte Zeiger identifizieren. 2) Es kann ungenutzte Variablen, tote Code und logische Widersprüche erkennen. 3) Statische Analysetools wie die Deckung können Pufferüberlauf, Ganzzahlüberlauf und unsichere API -Aufrufe zur Verbesserung der Codesicherheit erkennen.

C interagiert mit XML über Bibliotheken von Drittanbietern (wie Tinyxml, Pugixml, Xerces-C). 1) Verwenden Sie die Bibliothek, um XML-Dateien zu analysieren und in C-verarbeitbare Datenstrukturen umzuwandeln. 2) Konvertieren Sie beim Generieren von XML die C -Datenstruktur in das XML -Format. 3) In praktischen Anwendungen wird XML häufig für Konfigurationsdateien und Datenaustausch verwendet, um die Entwicklungseffizienz zu verbessern.

Durch die Verwendung der Chrono -Bibliothek in C können Sie Zeit- und Zeitintervalle genauer steuern. Erkunden wir den Charme dieser Bibliothek. Die Chrono -Bibliothek von C ist Teil der Standardbibliothek, die eine moderne Möglichkeit bietet, mit Zeit- und Zeitintervallen umzugehen. Für Programmierer, die in der Zeit gelitten haben.H und CTime, ist Chrono zweifellos ein Segen. Es verbessert nicht nur die Lesbarkeit und Wartbarkeit des Codes, sondern bietet auch eine höhere Genauigkeit und Flexibilität. Beginnen wir mit den Grundlagen. Die Chrono -Bibliothek enthält hauptsächlich die folgenden Schlüsselkomponenten: std :: chrono :: system_clock: repräsentiert die Systemuhr, mit der die aktuelle Zeit erhalten wird. std :: chron

Die Zukunft von C wird sich auf parallele Computer, Sicherheit, Modularisierung und KI/maschinelles Lernen konzentrieren: 1) Paralleles Computer wird durch Merkmale wie Coroutinen verbessert. 2) Die Sicherheit wird durch strengere Mechanismen vom Typ Überprüfung und Speicherverwaltung verbessert. 3) Modulation vereinfacht die Codeorganisation und die Kompilierung. 4) KI und maschinelles Lernen fordern C dazu auf, sich an neue Bedürfnisse anzupassen, wie z. B. numerische Computer- und GPU -Programmierunterstützung.

DMA in C bezieht sich auf DirectMemoryAccess, eine direkte Speicherzugriffstechnologie, mit der Hardware -Geräte ohne CPU -Intervention Daten direkt an den Speicher übertragen können. 1) Der DMA -Betrieb ist in hohem Maße von Hardware -Geräten und -Treibern abhängig, und die Implementierungsmethode variiert von System zu System. 2) Direkter Zugriff auf Speicher kann Sicherheitsrisiken mitbringen, und die Richtigkeit und Sicherheit des Codes muss gewährleistet werden. 3) DMA kann die Leistung verbessern, aber eine unsachgemäße Verwendung kann zu einer Verschlechterung der Systemleistung führen. Durch Praxis und Lernen können wir die Fähigkeiten der Verwendung von DMA beherrschen und seine Wirksamkeit in Szenarien wie Hochgeschwindigkeitsdatenübertragung und Echtzeitsignalverarbeitung maximieren.
