Heim Backend-Entwicklung C++ C und C sind wirklich so schnell?

C und C sind wirklich so schnell?

Dec 07, 2024 am 09:25 AM

C and C   are really so fast?

Während ich mich mit dem Programmieren beschäftige, höre ich, dass C und C die Geschwindigkeitsstandards sind. Das Schnellste vom Schnellsten, direkt in Assembler-Code kompiliert, in der Geschwindigkeit kann nichts mit C oder C mithalten. Und niemand scheint diesen allgemeinen Glauben in Frage zu stellen.

Rechenleistung

Arithmetische Operationen mit Zahlen müssen in C natürlich deutlich schneller funktionieren als in jeder anderen Sprache. Aber tun sie das?
Vor einiger Zeit habe ich beschlossen, eine Reihe einfacher Benchmarks für viele verschiedene Sprachen zu schreiben, um zu sehen, wie groß der Geschwindigkeitsunterschied wirklich ist.
Die Idee war einfach: die Summe einer Milliarde ganzer Zahlen ausgehend von Null mithilfe einfacher Berechnungen zu ermitteln. Einige Compiler (z. B. rustc) ersetzen solche einfachen Zyklen durch Formelausdrücke, die natürlich in konstanter Zeit ausgewertet werden. Um das mit solchen Compilern zu vermeiden. Ähnliches habe ich bei Kostenoperationen mit Zahlen verwendet, wie zum Beispiel bitweise oder.
Nachdem ich Ergebnisse erhalten hatte, war ich sehr überrascht. Meine Weltanschauung stellte sich auf den Kopf und ich musste alles, was ich über die Geschwindigkeit von Programmiersprachen wusste, noch einmal überdenken.
Sie können meine Ergebnisse in der folgenden Tabelle sehen:

Linux 64bit, 1,1 GHz ​​CPU, 4GBRAM

Sprache compiler/version/args Zeit Rost (
Language compiler/version/args time
Rust (bitwise or instead of ) rustc 1.75.0 with -O3 167 ms
C gcc 11.4.0 with -O3 335 ms
NASM 2.15.05 339 ms
Go 1.18.1 340 ms
Java 17.0.13 345 ms
Common Lisp SBCL 2.1.11 1 sec
Python 3 pypy 3.8.13 1.6 sec
Clojure 1.10.2 9 sec
Python 3 cpython 3.10.12 26 sec
Ruby 3.0.2p107 38 sec
bitweise oder statt ) rustc 1.75.0 mit -O3 167 ms C gcc 11.4.0 mit -O3 335 ms NASM 2.15.05 339 ms Los 1.18.1 340 ms Java 17.0.13 345 ms Gemeinsames Lisp SBCL 2.1.11 1 Sek. Python 3 pypy 3.8.13 1,6 Sek. Clojure 1.10.2 9 Sek. Python 3 cpython 3.10.12 26 Sek. Ruby 3.0.2p107 38 Sek.

Alle Testquellen finden Sie hier:
https://github.com/Taqmuraz/speed-table

Wie wir also sehen können, ist C nicht sehr viel schneller als Java, der Unterschied beträgt etwa 3 %. Außerdem sehen wir, dass andere kompilierte Sprachen in der Leistung arithmetischer Operationen C sehr nahe kommen (Rust ist sogar noch schneller). Dynamische Sprachen, die mit dem JIT-Compiler kompiliert wurden, zeigen schlechtere Ergebnisse – vor allem, weil dort arithmetische Operationen in dynamisch verteilte Funktionen verpackt sind.
Interpretierte dynamische Sprachen ohne JIT-Compiler zeigen die schlechteste Leistung, keine Überraschung.

Leistung der Speicherzuordnung

Nach dieser vernichtenden Niederlage würden C-Fans sagen, dass die Speicherzuweisung in C sehr viel schneller ist, weil Sie sie direkt vom System zuweisen und nicht nach GC fragen.
Ab und zu werde ich den Begriff GC je nach Kontext sowohl als Garbage Collector als auch als verwalteter Heap verwenden.
Warum denken die Leute also, dass GC so langsam ist? Tatsächlich verfügt GC über vorab zugewiesenen Speicher, und bei der Zuweisung wird einfach der Zeiger nach rechts verschoben. Meistens füllt GC den zugewiesenen Speicher mithilfe eines Systemaufrufs mit Nullen, ähnlich wie memset aus C, sodass eine konstante Zeit benötigt wird. Während die Speicherzuweisung in C undefinierte Zeit in Anspruch nimmt, da sie vom System und dem bereits zugewiesenen Speicher abhängt.
Aber selbst unter Berücksichtigung dieses Wissens konnte ich von Java keine so guten Ergebnisse erwarten, wie Sie in den folgenden Tabellen sehen können:

1.1 GHz 2 cores, 4 GB RAM
Running tests on single thread.
Result format : "Xms-Yms ~Z ms" means tests took from X to Y milliseconds, and Z milliseconds in average
1,1 GHz ​​2 Kerne, 4 GBRAM Tests für einzelnen Thread ausführen. Ergebnisformat: „Xms-Yms ~Z ms“ bedeutet, dass Tests zwischen X und Y Millisekunden und im Durchschnitt Z Millisekunden gedauert haben.

Zuweisen von Integer-Arrays

integers array size times Java 17.0.13 new[] C gcc 11.4.0 malloc Common Lisp SBCL 2.1.11 make-array
16 10000 0-1ms, ~0.9ms 1-2ms, ~1.2ms 0-4ms, ~0.73ms
32 10000 1-3ms, ~1.7ms 1-3ms, ~1.7ms 0-8ms, ~2.ms
1024 10000 6-26ms, ~12ms 21-46ms, ~26ms 12-40ms, ~7ms
2048 10000 9-53ms, ~22ms 24-52ms, ~28ms 12-40ms, ~19ms
16 100000 0-9ms, ~2ms 6-23ms, ~9ms 4-24ms, ~7ms
32 100000 0-14ms, ~3ms 10-15ms, ~11ms 3-8ms, ~7ms
1024 100000 0-113ms, ~16ms 234-1156ms, ~654ms 147-183ms, ~155ms
2048 100000 0-223ms, ~26ms 216-1376ms, ~568ms 299-339ms, ~307ms

Zuweisen einer Instanz der Klasse Person mit einem ganzzahligen Feld.

how many instances Java 17.0.3 new Person(n) C g 11.4.0 new Person(n)
100000 0-6ms, ~1.3ms 4-8ms, ~5ms
1 million 0-11ms, ~2ms 43-69ms, ~47ms
1 billion 22-50ms, ~28ms process terminated

Alle Testquellen finden Sie hier:
https://github.com/Taqmuraz/alloc-table

Dort habe ich insgesamt vier Sprachen getestet: C, C, Java und Lisp. Und Sprachen mit GC zeigen immer bessere Ergebnisse, obwohl ich sie viel strenger getestet habe als C und C . In Java ordne ich beispielsweise Speicher über den virtuellen Funktionsaufruf zu, sodass er möglicherweise nicht statisch optimiert ist, und in Lisp überprüfe ich das erste Element des zugewiesenen Arrays, damit der Compiler den Zuweisungsaufruf nicht überspringt.

Erinnerung freigeben

C-Fans sind immer noch motiviert, ihre Überzeugungen zu schützen, also sagen sie: „Ja, Sie weisen Speicher zwar schneller zu, aber Sie müssen ihn danach freigeben!“.
WAHR. Und plötzlich gibt GC Speicher schneller frei als C. Aber wie? Stellen Sie sich vor, wir haben 1 Million Zuweisungen von GC vorgenommen, aber später haben wir nur noch 1000 Objekte, auf die in unserem Programm verwiesen wird. Und sagen wir mal, diese Objekte sind über die gesamte lange Zeitspanne des Gedächtnisses verteilt. GC führt eine Stapelverfolgung durch, findet diese 1000 „lebenden“ Objekte, verschiebt sie auf den Heap-Peak der vorherigen Generation und setzt den Heap-Peak-Zeiger nach dem letzten von ihnen. Das ist alles.
Also, egal wie viele Objekte Sie zuweisen, GCs Arbeitszeit wird dadurch bestimmt, wie viele davon Sie danach behalten.
Und im Gegensatz dazu müssen Sie in C den gesamten zugewiesenen Speicher manuell freigeben. Wenn Sie also 1 Million Mal Speicher zugewiesen haben, müssen Sie auch 1 Million Freigabeaufrufe durchführen (sonst kommt es zu Speicherlecks). Das heißt, O(1)-O(n) von GC gegen O(n) oder noch schlimmer von C, wobei n ist die Anzahl der zuvor erfolgten Zuweisungen.

Zusammenfassung

Deshalb möchte ich den Sieg der Garbage-Collected-Sprachen über C und C festigen. Hier ist die Übersichtstabelle:

Anforderungen Sprachen mit GC C/C Arithmetik schnell mit
demands languages with GC C/C
arithmetic fast with JIT fast
allocating memory fast O(1) slow
releasing memory fast O(1) best case, O(n) worst case O(n) or slower
memory safe yes no
JIT schnell Speicher zuweisen schnell O(1) langsam Speicher freigeben schnell O(1) im besten Fall, O(n) im schlechtesten Fall O(n) oder langsamer Speichersicher ja Nein

Jetzt sehen wir vielleicht: Müllabfuhr ist kein notwendiges Übel, sondern das Beste, was wir uns nur wünschen können. Es gibt uns Sicherheit undLeistung beides.

Hommage an C

Obwohl C bei meinen Tests schlechtere Ergebnisse zeigt, ist es immer noch eine wichtige Sprache und hat ein eigenes Anwendungsgebiet. Mein Artikel zielt nicht auf die Ablehnung oder Auslöschung von C ab. C ist nicht schlecht, es ist nur nicht so überlegen, wie die Leute denken. Viele gute Projekte scheiterten nur, weil sich einige Leute für die Verwendung von C anstelle von Java entschieden hatten, weil ihnen beispielsweise gesagt wurde, dass C sehr viel schneller sei und Java aufgrund der Speicherbereinigung unglaublich langsam sei. C ist gut, wenn wir sehr kleine und einfache Programme schreiben. Ich würde jedoch niemals empfehlen, komplexe Programme oder Spiele mit C zu schreiben.

C ist anders

C ist nicht einfach, nicht flexibel, hat eine überladene Syntax und zu viele komplizierte Spezifikationen. Beim Programmieren mit C setzt man keine eigenen Ideen um, kämpft aber in 90 % der Fälle mit Compiler- und Speicherfehlern.
Dieser Artikel zielt auf die Ablehnung von C ab, da Geschwindigkeit und Leistung nur Ausreden sind, die Menschen für die Verwendung dieser Sprache in der Softwareentwicklung anführen. Mit C zahlen Sie mit Ihrer Zeit, Ihrer Programmleistung und Ihrer geistigen Gesundheit. Wenn Sie also die Wahl zwischen C und einer anderen Sprache haben, hoffe ich, dass Sie sich für die letzte entscheiden.

Das obige ist der detaillierte Inhalt vonC und C sind wirklich so schnell?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

C Sprachdatenstruktur: Datenrepräsentation und Betrieb von Bäumen und Grafiken C Sprachdatenstruktur: Datenrepräsentation und Betrieb von Bäumen und Grafiken Apr 04, 2025 am 11:18 AM

C Sprachdatenstruktur: Die Datenrepräsentation des Baumes und des Diagramms ist eine hierarchische Datenstruktur, die aus Knoten besteht. Jeder Knoten enthält ein Datenelement und einen Zeiger auf seine untergeordneten Knoten. Der binäre Baum ist eine besondere Art von Baum. Jeder Knoten hat höchstens zwei Kinderknoten. Die Daten repräsentieren structTreenode {intdata; structTreenode*links; structTreenode*rechts;}; Die Operation erstellt einen Baumtraversalbaum (Vorbereitung, in Ordnung und späterer Reihenfolge) Suchbauminsertion-Knoten Lösches Knotendiagramm ist eine Sammlung von Datenstrukturen, wobei Elemente Scheitelpunkte sind, und sie können durch Kanten mit richtigen oder ungerechten Daten miteinander verbunden werden, die Nachbarn darstellen.

Die Wahrheit hinter dem Problem der C -Sprachdatei Die Wahrheit hinter dem Problem der C -Sprachdatei Apr 04, 2025 am 11:24 AM

Die Wahrheit über Probleme mit der Dateibetrieb: Dateiöffnung fehlgeschlagen: unzureichende Berechtigungen, falsche Pfade und Datei besetzt. Das Schreiben von Daten fehlgeschlagen: Der Puffer ist voll, die Datei ist nicht beschreibbar und der Speicherplatz ist nicht ausreichend. Andere FAQs: Langsame Dateitraversal, falsche Textdateicodierung und Binärdatei -Leser -Fehler.

Was sind die grundlegenden Anforderungen für C -Sprachfunktionen? Was sind die grundlegenden Anforderungen für C -Sprachfunktionen? Apr 03, 2025 pm 10:06 PM

C -Sprachfunktionen sind die Grundlage für die Code -Modularisierung und das Programmaufbau. Sie bestehen aus Deklarationen (Funktionsüberschriften) und Definitionen (Funktionskörper). C Sprache verwendet standardmäßig Werte, um Parameter zu übergeben, aber externe Variablen können auch mit dem Adresspass geändert werden. Funktionen können oder haben keinen Rückgabewert, und der Rückgabewerttyp muss mit der Deklaration übereinstimmen. Die Benennung von Funktionen sollte klar und leicht zu verstehen sein und mit Kamel oder Unterstrich die Nomenklatur. Befolgen Sie das Prinzip der einzelnen Verantwortung und behalten Sie die Funktion ein, um die Wartbarkeit und die Lesbarkeit zu verbessern.

Funktionsname -Definition in C -Sprache Funktionsname -Definition in C -Sprache Apr 03, 2025 pm 10:03 PM

Die Definition des C -Sprachfunktionsname enthält: Rückgabewerttyp, Funktionsname, Parameterliste und Funktionsbehörde. Funktionsnamen sollten klar, präzise und einheitlich sein, um Konflikte mit Schlüsselwörtern zu vermeiden. Funktionsnamen haben Bereiche und können nach der Deklaration verwendet werden. Funktionszeiger ermöglichen es, Funktionen zu übergeben oder als Argumente zugeordnet zu werden. Zu den häufigen Fehlern gehören die Benennung von Konflikten, die Nichtübereinstimmung von Parametertypen und nicht deklarierte Funktionen. Die Leistungsoptimierung konzentriert sich auf das Funktionsdesign und die Implementierung, während ein klarer und einfach zu lesender Code von entscheidender Bedeutung ist.

Berechnung des C-Subscript 3-Index 5 C-Subscript 3-Index 5-Algorithmus-Tutorial Berechnung des C-Subscript 3-Index 5 C-Subscript 3-Index 5-Algorithmus-Tutorial Apr 03, 2025 pm 10:33 PM

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

Konzept der C -Sprachfunktion Konzept der C -Sprachfunktion Apr 03, 2025 pm 10:09 PM

C -Sprachfunktionen sind wiederverwendbare Codeblöcke. Sie erhalten Input, führen Vorgänge und Rückgabergebnisse aus, die modular die Wiederverwendbarkeit verbessert und die Komplexität verringert. Der interne Mechanismus der Funktion umfasst Parameterübergabe-, Funktionsausführung und Rückgabeteile. Der gesamte Prozess beinhaltet eine Optimierung wie die Funktion inline. Eine gute Funktion wird nach dem Prinzip der einzigen Verantwortung, der geringen Anzahl von Parametern, den Benennungsspezifikationen und der Fehlerbehandlung geschrieben. Zeiger in Kombination mit Funktionen können leistungsstärkere Funktionen erzielen, z. B. die Änderung der externen Variablenwerte. Funktionszeiger übergeben Funktionen als Parameter oder speichern Adressen und werden verwendet, um dynamische Aufrufe zu Funktionen zu implementieren. Das Verständnis von Funktionsmerkmalen und Techniken ist der Schlüssel zum Schreiben effizienter, wartbarer und leicht verständlicher C -Programme.

CS-Woche 3 CS-Woche 3 Apr 04, 2025 am 06:06 AM

Algorithmen sind die Anweisungen zur Lösung von Problemen, und ihre Ausführungsgeschwindigkeit und Speicherverwendung variieren. Bei der Programmierung basieren viele Algorithmen auf der Datensuche und Sortierung. In diesem Artikel werden mehrere Datenabruf- und Sortieralgorithmen eingeführt. Die lineare Suche geht davon aus, dass es ein Array gibt [20.500,10,5,100, 1,50] und die Nummer 50 ermitteln muss. Der lineare Suchalgorithmus prüft jedes Element im Array Eins nach eins nach dem anderen, bis der Zielwert gefunden oder das vollständige Array durchquert wird. Der Algorithmus-Flussdiagramm lautet wie folgt: Der Pseudo-Code für die lineare Suche lautet wie folgt: Überprüfen Sie jedes Element: Wenn der Zielwert gefunden wird: Return Return Falsch C-Sprache Implementierung: #includeIntmain (void) {i

C Sprach -Multithread -Programmierung: Ein Anfängerleitfaden und Fehlerbehebung C Sprach -Multithread -Programmierung: Ein Anfängerleitfaden und Fehlerbehebung Apr 04, 2025 am 10:15 AM

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

See all articles