


Wie können die vektorisierten Funktionen von NumPy Arrays effizient rechtfertigen?
NumPy-Arrays mit vektorisierten Funktionen rechtfertigen
NumPy bietet effiziente Möglichkeiten zur Rechtfertigung von Arrays mit vektorisierten Funktionen und bietet im Vergleich zu herkömmlichen Python-Schleifen eine verbesserte Leistung und Einfachheit des Codes.
Problemstellung
Bei einem gegebenen NumPy-Array besteht die Aufgabe darin, seine Nicht-Null-Elemente zu verschieben nach links, rechts, oben oder unten, während die Form beibehalten wird.
Numpy-Lösung
Die folgende NumPy-Implementierung führt eine effiziente Ausrichtung durch:
import numpy as np def justify(a, invalid_val=0, axis=1, side='left'): if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out
Diese Funktion richtet a aus 2D-Array entlang der angegebenen Achse und Seite (links, rechts, oben, unten). Es funktioniert, indem es Nicht-Null-Elemente mithilfe der Maske identifiziert, sie mithilfe der Sortierung sortiert, die Maske umdreht, wenn es nach oben oder links ausgerichtet wird, und schließlich das ursprüngliche Array mit den ausgerichteten Werten überschreibt.
Beispielverwendung
Hier ist ein Anwendungsbeispiel, das Nicht-Null-Elemente abdeckt links:
a = np.array([[1,0,2,0], [3,0,4,0], [5,0,6,0], [0,7,0,8]]) # Cover left covered_left = justify(a, axis=1, side='left') print("Original Array:") print(a) print("\nCovered Left:") print(covered_left)
Ausgabe:
Original Array: [[1 0 2 0] [3 0 4 0] [5 0 6 0] [0 7 0 8]] Covered Left: [[1 2 0 0] [3 4 0 0] [5 6 0 0] [7 8 0 0]]
Ausrichtung für ein generisches N-dimensionales Array
Um ein N-dimensionales Array auszurichten, kann die folgende Funktion verwendet werden :
def justify_nd(a, invalid_val, axis, side): pushax = lambda a: np.moveaxis(a, axis, -1) if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[mask] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)] return out
Diese Funktion unterstützt komplexere Szenarien, indem sie ein N-dimensionales Array entlang einer beliebigen Achse und entweder an der Achse ausrichtet 'Vorderseite' oder 'Ende' des Arrays.
Das obige ist der detaillierte Inhalt vonWie können die vektorisierten Funktionen von NumPy Arrays effizient rechtfertigen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Fastapi ...

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Über Pythonasyncio ...

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...
