


Wie vereinfacht man die Zuweisung von Fremdschlüsseln in Serialisierern des Nested Django REST Framework?
DRF: Vereinfachte Fremdschlüsselzuweisung in verschachtelten Serialisierern
Problem:
Mit Django REST Framework (DRF), a Mit dem Standard-ModelSerializer können ForeignKey-Modellbeziehungen zugewiesen oder bearbeitet werden, indem eine ID als Ganzzahl angegeben wird. Bei der Arbeit mit verschachtelten Serialisierern wirft die Replikation dieses Verhaltens jedoch Zweifel an der besten Vorgehensweise auf.
Lösung:
Überschreiben der to_representation()-Methode
Eins Die Methode zum Erreichen dieser Funktionalität in einem verschachtelten Serialisierer besteht darin, die Methode to_representation() im übergeordneten Serialisierer zu überschreiben. Diese Technik hat folgende Vorteile:
- Keine separaten Felder zum Erstellen und Lesen erforderlich.
- Sowohl das Erstellen als auch das Lesen können mit demselben Schlüssel erfolgen.
Beispiel für einen übergeordneten Serializer mit der Methode „Modified to_representation()“:
class ParentSerializer(ModelSerializer): class Meta: model = Parent fields = '__all__' def to_representation(self, instance): response = super().to_representation(instance) response['child'] = ChildSerializer(instance.child).data return response
Verwendet ein benutzerdefiniertes Serialisierungsfeld
Für eine allgemeinere Lösung sollten Sie die Erstellung eines benutzerdefinierten Serialisierungsfelds namens „RelatedFieldAlternative“ in Betracht ziehen. Dieses Feld stellt die Kompatibilität mit den DRF-Versionen 3.x und 4.x sicher.
Benutzerdefiniertes Serialisierungsfeld:
from rest_framework import serializers class RelatedFieldAlternative(serializers.PrimaryKeyRelatedField): def __init__(self, **kwargs): self.serializer = kwargs.pop('serializer', None) if self.serializer is not None and not issubclass(self.serializer, serializers.Serializer): raise TypeError('"serializer" is not a valid serializer class') super().__init__(**kwargs) def use_pk_only_optimization(self): return False if self.serializer else True def to_representation(self, instance): if self.serializer: return self.serializer(instance, context=self.context).data return super().to_representation(instance)
Verwendung des benutzerdefinierten Felds im übergeordneten Feld Serialisierer:
class ParentSerializer(ModelSerializer): child = RelatedFieldAlternative(queryset=Child.objects.all(), serializer=ChildSerializer) class Meta: model = Parent fields = '__all__'
Das obige ist der detaillierte Inhalt vonWie vereinfacht man die Zuweisung von Fremdschlüsseln in Serialisierern des Nested Django REST Framework?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
