


Warum belassen Pythons „for'-Schleifen Schleifenvariablen im Gültigkeitsbereich?
Scoping in Python-„for“-Schleifen: Die Designphilosophie verstehen
Während Pythons Scoping-Regeln für „for“-Schleifen allgemein verstanden werden, ist die Begründung dahinter geblieben Geheimnis. In diesem Artikel werden die Gründe für die Designentscheidungen untersucht, die zum aktuellen Scoping-Verhalten geführt haben.
Betrachten Sie den folgenden Python-Code:
for foo in xrange(10): bar = 2 print(foo, bar)
Bei der Ausführung gibt dieser Code (9, 2) aus ). Dieses Verhalten ist überraschend, da „foo“ nur zur Steuerung der Schleifeniteration verwendet wird und „bar“ innerhalb der Schleife definiert ist. Logischerweise erscheint es unnötig, dass auf „bar“ außerhalb der Schleife zugegriffen werden kann und dass die Schleifensteuervariable „foo“ nach dem Beenden der Schleife im Gültigkeitsbereich bleibt.
Die plausibelste Erklärung für diese Designwahl ist Einfachheit . Durch die Einfachheit der Scoping-Regeln behält Python eine klare und prägnante Grammatik bei. Diese Entscheidung hat die Einführung nicht behindert und die Funktion wurde von der Community weitgehend akzeptiert. Das Zuweisen von Variablen innerhalb von Schleifenkonstrukten erfordert keine explizite Begriffsklärung des Bereichs. Darüber hinaus bietet das Schlüsselwort „global“ die Möglichkeit, Variablen einem globalen Bereich zuzuweisen.
Eine ausführliche Diskussion über die Bereichsregeln von Python finden Sie auf der Mailingliste „Python Ideas“. Ein bemerkenswertes Argument ist, dass vorhandener Code häufig darauf angewiesen ist, dass Schleifenvariablen ihre Werte nach dem Verlassen einer Schleife beibehalten, was als wünschenswerte Funktion angesehen wird.
Zusammenfassend lässt sich sagen, dass Pythons Designphilosophie für die Festlegung des Gültigkeitsbereichs in „for“-Schleifen der Einfachheit Priorität einräumt das Ziel, eine klare und prägnante Syntax beizubehalten. Dieser Ansatz hat sich in der Python-Community als beliebt erwiesen, trotz einiger potenzieller Nachteile in Bezug auf überfüllte globale Namespaces und Fehlerverfolgung.
Das obige ist der detaillierte Inhalt vonWarum belassen Pythons „for'-Schleifen Schleifenvariablen im Gültigkeitsbereich?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
