Inhaltsverzeichnis
Erstellen einer neuen Spalte basierend auf Werten aus mehreren Spalten mithilfe einer Funktion in Pandas
Beispielszenario
Lösung
1. Definieren der benutzerdefinierten Funktion
2. Anwenden der Funktion auf den Datenrahmen
Heim Backend-Entwicklung Python-Tutorial Wie erstelle ich eine neue Rassenbezeichnungsspalte in Pandas basierend auf mehreren Ethnizitätsspalten?

Wie erstelle ich eine neue Rassenbezeichnungsspalte in Pandas basierend auf mehreren Ethnizitätsspalten?

Dec 10, 2024 am 11:33 AM

How to Create a New Race Label Column in Pandas Based on Multiple Ethnicity Columns?

Erstellen einer neuen Spalte basierend auf Werten aus mehreren Spalten mithilfe einer Funktion in Pandas

Bei der Arbeit mit Datenrahmen in Pandas kann es erforderlich sein, eine neue Spalte basierend auf zu erstellen Werte aus mehreren vorhandenen Spalten. Ein häufiges Szenario entsteht, wenn eine benutzerdefinierte Funktion zeilenweise auf eine Reihe von Spalten angewendet werden muss, um die Werte der neuen Spalte zu bestimmen.

Beispielszenario

Betrachten Sie den folgenden Datenrahmen mit sechs auf die ethnische Zugehörigkeit bezogenen Daten Indikatorspalten:

df = pd.DataFrame({
    'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
    'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
    'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
})
Nach dem Login kopieren

Das Ziel besteht darin, eine neue Spalte mit dem Namen „race_label“ zu erstellen, die jede Zeile basierend auf Folgendem klassifiziert Kriterien:

  1. Wenn ERI_Hispanic gleich 1 ist, geben Sie „Hispanic“ zurück.
  2. Wenn die Summe aller nicht-hispanischen ERI-Spalten (ERI_AmerInd_AKNatv, ERI_Asian, ERI_Black_Afr.Amer, ERI_HI_PacIsl und ERI_White ) größer als 1 ist, geben Sie „Zwei“ zurück oder mehr".
  3. Für jeden anderen Wert ungleich Null in den ERI-Spalten geben Sie die entsprechende Rassenbezeichnung zurück (z. B. „A/I AK Native“, „Asian“, „Black/AA“, „Haw“) /Pac Isl.“ oder „White“).

Lösung

Die Lösung umfasst zwei Schritte: Erstellen einer benutzerdefinierten Funktion zur Durchführung der Klassifizierung und Anwenden der Funktion zeilenweise zum Datenrahmen hinzufügen.

1. Definieren der benutzerdefinierten Funktion

def label_race(row):
    if row['ERI_Hispanic'] == 1:
        return 'Hispanic'
    elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1:
        return 'Two or More'
    elif row['ERI_AmerInd_AKNatv'] == 1:
        return 'A/I AK Native'
    elif row['ERI_Asian'] == 1:
        return 'Asian'
    elif row['ERI_Black_Afr.Amer'] == 1:
        return 'Black/AA'
    elif row['ERI_HI_PacIsl'] == 1:
        return 'Haw/Pac Isl.'
    elif row['ERI_White'] == 1:
        return 'White'
    else:
        return 'Other'
Nach dem Login kopieren

Diese Funktion verwendet eine Zeile des Datenrahmens als Eingabe und gibt die entsprechende Rassenbezeichnung basierend auf den bereitgestellten Kriterien zurück.

2. Anwenden der Funktion auf den Datenrahmen

Um die neue Spalte „race_label“ zu erstellen, verwenden Sie die Funktion apply() zusammen mit dem Parameter axis=1, um die Funktion label_race auf jede Zeile des Datenrahmens anzuwenden.

df['race_label'] = df.apply(label_race, axis=1)
Nach dem Login kopieren

Der resultierende Datenrahmen mit der neuen Spalte wird unten angezeigt:

    ERI_Hispanic  ERI_AmerInd_AKNatv  ERI_Asian  ERI_Black_Afr.Amer  ERI_HI_PacIsl  ERI_White  \
0             0                  0         0                     0             0          1   
1             1                  0         0                     0             0          0   
2             0                  0         0                     0             0          1   
3             0                  0         0                     0             0          1   
4             0                  0         0                     0             0          0   
5             0                  0         0                     0             0          1   
6             0                  0         1                     0             0          1   
7             0                  0         0                     0             1          1   
8             0                  0         0                     1             0          0   
9             0                  0         0                     0             0          1   

     race_label  
0         White  
1      Hispanic  
2         White  
3         White  
4         Other  
5         White  
6   Two or More  
7         White  
8  Haw/Pac Isl.  
9         White  
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWie erstelle ich eine neue Rassenbezeichnungsspalte in Pandas basierend auf mehreren Ethnizitätsspalten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1653
14
PHP-Tutorial
1251
29
C#-Tutorial
1224
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Wie viel Python können Sie in 2 Stunden lernen? Wie viel Python können Sie in 2 Stunden lernen? Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles