


Wie kann ich mehrere Prozesse in Python effizient verbinden und komplexe Rohrleitungen mit „subprocess.Popen' vermeiden?
Mehrere Prozesse über Pipes mit subprocess.Popen verbinden
In diesem Szenario möchten Sie einen Shell-Befehl mithilfe des Subprocess-Moduls ausführen und dabei drei Befehle verbinden: echo, awk , sortieren und ihre Ausgabe an eine Ausgabedatei weiterleiten.
echo "input data" | awk -f script.awk | sort > outfile.txt
Mit subprocess.Popen können Sie haben:
import subprocess p_awk = subprocess.Popen(["awk","-f","script.awk"], stdin=subprocess.PIPE, stdout=file("outfile.txt", "w")) p_awk.communicate( "input data" )
Während sich diese Lösung mit der Verrohrung von awk zum Sortieren befasst, übersieht sie einen wichtigen Gesichtspunkt:
Eliminierung von Awk und Pipes
Wie in der akzeptierten Antwort vorgeschlagen, ist es vorteilhafter, das neu zu schreiben, anstatt awk und Pipes zu verwenden script.awk in Python. Dadurch entfallen awk, die Pipeline und die Notwendigkeit einer komplexen Unterprozessbehandlung.
Vorteile der Nur-Python-Verarbeitung
Durch die Ausführung aller Vorgänge innerhalb von Python profitieren Sie mehrere Vorteile:
- Keine Notwendigkeit für Zwischenschritte (z. B. awk), die Komplexität und Potenzial erhöhen Probleme.
- Beseitigung potenzieller Parallelitätsengpässe, die durch Pipes verursacht werden.
- Vereinfachter Code, wodurch die Notwendigkeit der Verarbeitung mehrerer Unterprozesse entfällt.
- Verwendung einer einzigen Programmiersprache, wodurch der Bedarf reduziert wird um verschiedene Sprachkonstrukte zu verstehen.
- Verbesserte Klarheit und Wartbarkeit der Code.
Vermeiden der Komplexität von Pipelines
Das Erstellen von Pipelines in der Shell erfordert mehrere Forks und Dateideskriptormanipulationen. Während es in Python mithilfe von Low-Level-APIs möglich ist, ist es weitaus einfacher, die Pipeline-Erstellung an die Shell zu delegieren, indem:
awk_sort = subprocess.Popen( "awk -f script.awk | sort > outfile.txt", stdin=subprocess.PIPE, shell=True ) awk_sort.communicate( b"input data\n" )
Dieser Ansatz verwendet die Shell als Vermittler zum Erstellen der Pipeline und vereinfacht so den Python-Code.
Das obige ist der detaillierte Inhalt vonWie kann ich mehrere Prozesse in Python effizient verbinden und komplexe Rohrleitungen mit „subprocess.Popen' vermeiden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
