


Wie kann man trainierte Modelle in TensorFlow effektiv speichern und wiederherstellen?
Trainierte Modelle in Tensorflow speichern und wiederherstellen
Nach dem Training eines Modells in Tensorflow ist dessen Beibehaltung und Wiederverwendung von entscheidender Bedeutung. So gehen Sie effektiv mit der Modellspeicherung um:
Speichern des trainierten Modells (Tensorflow-Version 0.11 und höher):
- Eingabe vorbereiten: Definieren Sie Platzhalter und bereiten Sie das Feed-Wörterbuch mit Eingabedaten vor.
- Definieren Operationen: Geben Sie die wiederherzustellenden Operationen an, z. B. Addition oder Multiplikation.
- Sparobjekt erstellen: Instanziieren Sie ein Sparobjekt, das den Variablenspeicher verwaltet.
- Speichern Sie das Diagramm: Verwenden Sie die Methode saver.save(), um das Modell einschließlich Variablen und Diagramm zu speichern Struktur.
Beispielcode:
import tensorflow as tf # Prepare input placeholders w1 = tf.placeholder("float", name="w1") w2 = tf.placeholder("float", name="w2") # Define test operation w3 = tf.add(w1, w2) w4 = tf.multiply(w3, tf.Variable(2.0, name="bias"), name="op_to_restore") # Initialize variables and run session sess = tf.Session() sess.run(tf.global_variables_initializer()) # Create saver object saver = tf.train.Saver() # Save the model saver.save(sess, 'my_test_model', global_step=1000)
Wiederherstellen des gespeicherten Modells:
- Metadiagramm laden: Importieren Sie das Metadiagramm, um auf das gespeicherte Modell zuzugreifen Struktur.
- Variablen wiederherstellen: Verwenden Sie die saver.restore()-Methode, um gespeicherte Variablen abzurufen.
- Platzhalter und Feed-Daten abrufen: Eingaben abrufen Platzhalter und füttern Sie sie mit neuen Daten.
- Zugriff auf gespeicherte Vorgänge:Suchen Sie die Vorgänge Sie möchten sie ausführen und ausführen.
Beispielcode:
# Restore model saver = tf.train.import_meta_graph('my_test_model-1000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) # Get placeholders and feed data w1 = sess.graph.get_tensor_by_name("w1:0") w2 = sess.graph.get_tensor_by_name("w2:0") feed_dict = {w1: 13.0, w2: 17.0} # Run saved operation op_to_restore = sess.graph.get_tensor_by_name("op_to_restore:0") result = sess.run(op_to_restore, feed_dict)
Das obige ist der detaillierte Inhalt vonWie kann man trainierte Modelle in TensorFlow effektiv speichern und wiederherstellen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
