


Wie kann ich Matplotlib-Subplots mit flexibel konfigurierbaren Größen erstellen?
Unterplotgrößen flexibel in Matplotlib konfigurieren
Das Erstellen von Unterplots mit unterschiedlichen Größen ist eine häufige Anforderung bei der Visualisierung von Daten. Matplotlib bietet zwei Ansätze zum Anpassen der Subplot-Dimensionen: durch die Verwendung von GridSpec oder durch die Konfiguration der Figur selbst.
Verwenden der Matplotlib-Figur für die Subplot-Größenbestimmung
Im bereitgestellten Beispiel die Aufgabe besteht darin, zwei Nebenhandlungen zu erstellen, wobei die erste Nebenhandlung dreimal breiter ist als die zweite. Mithilfe des Konstruktors der Figur kann die Größe des ersten Diagramms mithilfe des Arguments figsize angepasst werden. Allerdings kann die Größe des zweiten Plots auf diese Weise nicht direkt gesteuert werden.
Lösung mit Schlüsselwortargumenten (Matplotlib >= 3.6.0)
Ab der Matplotlib-Version 3.6.0 können Schlüsselwortargumente direkt an plt.subplots und subplot_mosaic übergeben werden, um die width_ratios oder anzugeben height_ratios von Nebenplots. Dadurch entfällt die Notwendigkeit von GridSpec für diese spezielle Aufgabe.
import matplotlib.pyplot as plt # Create subplots with custom width ratios f, (a0, a1) = plt.subplots(1, 2, width_ratios=[3, 1]) # Plot on subplots a0.plot(x, y) a1.plot(y, x) # Save to PDF f.savefig('custom_width_subplots.pdf')
Verwenden von Subplots mit Gridspec_kw
Für frühere Versionen von Matplotlib oder für eine detailliertere Kontrolle darüber Für das Subplot-Layout kann die Subplots-Funktion mit dem Argument „gridspec_kw“ verwendet werden. Bei diesem Ansatz werden eine Figur und einzelne Unterplots erstellt, die mit width_ratios oder height_ratios im Gridspec_kw-Wörterbuch angegeben werden.
import numpy as np import matplotlib.pyplot as plt # Generate data x = np.arange(0, 10, 0.2) y = np.sin(x) # Create subplots with custom width ratios f, (a0, a1) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [3, 1]}) # Plot on subplots a0.plot(x, y) a1.plot(y, x) # Tighten layout and save to PDF f.tight_layout() f.savefig('grid_figure.pdf')
Das obige ist der detaillierte Inhalt vonWie kann ich Matplotlib-Subplots mit flexibel konfigurierbaren Größen erstellen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
