// Two Pointers - In-place array modification const modifyArray = (arr) => { let writePointer = 0; for (let readPointer = 0; readPointer < arr.length; readPointer++) { if (/* condition */) { [arr[writePointer], arr[readPointer]] = [arr[readPointer], arr[writePointer]]; writePointer++; } } return writePointer; // Often returns new length or modified position }; // Fast and Slow Pointers (Floyd's Cycle Detection) const hasCycle = (head) => { let slow = head, fast = head; while (fast && fast.next) { slow = slow.next; fast = fast.next.next; if (slow === fast) return true; } return false; }; // Sliding Window - Fixed Size const fixedSlidingWindow = (arr, k) => { let sum = 0; // Initialize first window for (let i = 0; i < k; i++) { sum += arr[i]; } let maxSum = sum; // Slide window for (let i = k; i < arr.length; i++) { sum = sum - arr[i - k] + arr[i]; maxSum = Math.max(maxSum, sum); } return maxSum; }; // Sliding Window - Variable Size const varSlidingWindow = (arr, target) => { let start = 0, sum = 0, minLen = Infinity; for (let end = 0; end < arr.length; end++) { sum += arr[end]; while (sum >= target) { minLen = Math.min(minLen, end - start + 1); sum -= arr[start]; start++; } } return minLen === Infinity ? 0 : minLen; }; // BFS - Level Order Traversal const levelOrder = (root) => { if (!root) return []; const result = []; const queue = [root]; while (queue.length) { const levelSize = queue.length; const currentLevel = []; for (let i = 0; i < levelSize; i++) { const node = queue.shift(); currentLevel.push(node.val); if (node.left) queue.push(node.left); if (node.right) queue.push(node.right); } result.push(currentLevel); } return result; }; // DFS - Recursive Template const dfs = (root) => { const result = []; const traverse = (node) => { if (!node) return; // Pre-order result.push(node.val); traverse(node.left); // In-order would be here traverse(node.right); // Post-order would be here }; traverse(root); return result; }; // Backtracking Template const backtrack = (nums) => { const result = []; const bt = (path, choices) => { if (/* ending condition */) { result.push([...path]); return; } for (let i = 0; i < choices.length; i++) { // Make choice path.push(choices[i]); // Recurse bt(path, /* remaining choices */); // Undo choice path.pop(); } }; bt([], nums); return result; }; // Dynamic Programming - Bottom Up Template const dpBottomUp = (n) => { const dp = new Array(n + 1).fill(0); dp[0] = 1; // Base case for (let i = 1; i <= n; i++) { for (let j = 0; j < i; j++) { dp[i] += dp[j] * /* some calculation */; } } return dp[n]; }; // Dynamic Programming - Top Down Template const dpTopDown = (n) => { const memo = new Map(); const dp = (n) => { if (n <= 1) return 1; if (memo.has(n)) return memo.get(n); let result = 0; for (let i = 0; i < n; i++) { result += dp(i) * /* some calculation */; } memo.set(n, result); return result; }; return dp(n); }; // Monotonic Stack Template const monotonicStack = (arr) => { const stack = []; // [index, value] const result = new Array(arr.length).fill(-1); for (let i = 0; i < arr.length; i++) { while (stack.length && stack[stack.length - 1][1] > arr[i]) { const [prevIndex, _] = stack.pop(); result[prevIndex] = i - prevIndex; } stack.push([i, arr[i]]); } return result; }; // Prefix Sum const prefixSum = (arr) => { const prefix = [0]; for (let i = 0; i < arr.length; i++) { prefix.push(prefix[prefix.length - 1] + arr[i]); } // Sum of range [i, j] = prefix[j + 1] - prefix[i] return prefix; }; // Binary Search Variations const binarySearchLeftmost = (arr, target) => { let left = 0, right = arr.length; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] < target) left = mid + 1; else right = mid; } return left; }; const binarySearchRightmost = (arr, target) => { let left = 0, right = arr.length; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] <= target) left = mid + 1; else right = mid; } return left - 1; }; // Trie Operations class TrieNode { constructor() { this.children = new Map(); this.isEndOfWord = false; } } class Trie { constructor() { this.root = new TrieNode(); } insert(word) { let node = this.root; for (const char of word) { if (!node.children.has(char)) { node.children.set(char, new TrieNode()); } node = node.children.get(char); } node.isEndOfWord = true; } search(word) { let node = this.root; for (const char of word) { if (!node.children.has(char)) return false; node = node.children.get(char); } return node.isEndOfWord; } startsWith(prefix) { let node = this.root; for (const char of prefix) { if (!node.children.has(char)) return false; node = node.children.get(char); } return true; } } // Union Find (Disjoint Set) class UnionFind { constructor(n) { this.parent = Array.from({length: n}, (_, i) => i); this.rank = new Array(n).fill(0); } find(x) { if (this.parent[x] !== x) { this.parent[x] = this.find(this.parent[x]); // Path compression } return this.parent[x]; } union(x, y) { let rootX = this.find(x); let rootY = this.find(y); if (rootX !== rootY) { if (this.rank[rootX] < this.rank[rootY]) { [rootX, rootY] = [rootY, rootX]; } this.parent[rootY] = rootX; if (this.rank[rootX] === this.rank[rootY]) { this.rank[rootX]++; } } } }
// O(1) - Constant Array.push(), Array.pop(), Map.set(), Map.get() // O(log n) - Logarithmic Binary Search, Balanced BST operations // O(n) - Linear Array traversal, Linear Search // O(n log n) - Linearithmic Efficient sorting (Array.sort()) // O(n²) - Quadratic Nested loops, Simple sorting algorithms // O(2ⁿ) - Exponential Recursive solutions without memoization
Das obige ist der detaillierte Inhalt vonJavaScript-Spickzettel für Vorstellungsgespräche – Teil 2. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!