


Wie kann man eindeutige Zeilen in Pandas-DataFrames beim Vergleich zweier DataFrames effizient identifizieren?
Eindeutige Zeilen in Pandas-Datenrahmen erhalten
Bei zwei Pandas-Datenrahmen ist es häufig erforderlich, Zeilen zu identifizieren, die nur in einem von ihnen vorhanden sind. Dies kann effektiv durch die Verwendung einer Zusammenführungsoperation erreicht werden.
Betrachten Sie beispielsweise die folgenden Datenrahmen:
df1 = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 3], 'col2': [10, 11, 12, 13, 14, 10]}) df2 = pd.DataFrame(data={'col1': [1, 2, 3], 'col2': [10, 11, 12]})
Um Zeilen aus df1 zu erhalten, die in df2 nicht vorhanden sind, können wir Folgendes ausführen: Linksverknüpfung zwischen df1 und df2. Um sicherzustellen, dass jede Zeile in df1 mit genau einer Zeile in df2 übereinstimmt, müssen wir zunächst doppelte Zeilen aus df2 entfernen. Wir können dies tun, indem wir die Funktion drop_duplicates() verwenden.
df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True)
Der resultierende df_all-Datenrahmen verfügt über eine zusätzliche Spalte mit dem Namen _merge, die angibt, ob jede Zeile sowohl von df1 als auch von df2 („beide“) stammt Nur df1 ('left_only') oder nur aus df2 ('right_only').
col1 col2 _merge 0 1 10 both 1 2 11 both 2 3 12 both 3 4 13 left_only 4 5 14 left_only 5 3 10 left_only
Zum Extrahieren der Zeilen aus df1, die in df2 nicht vorhanden sind, können wir einfach die Zeilen auswählen, in denen _merge gleich „left_only“ ist:
rows_not_in_df2 = df_all[df_all['_merge'] == 'left_only']
col1 col2 0 4 13 1 5 14 2 3 10
Vermeidung falscher Ansätze
Es ist wichtig, falsche Lösungen zu vermeiden, die die Zeilen nicht als Ganzes betrachten. Einige Lösungen prüfen nur, ob jeder einzelne Wert in einer Zeile im anderen Datenrahmen vorhanden ist, was zu falschen Ergebnissen führen kann.
Zum Beispiel, wenn wir df1 eine weitere Zeile mit den Daten [3, 10] hinzugefügt hätten, was auch in df2 vorhanden ist, würden die falschen Ansätze es immer noch als nicht vorhanden in df2 identifizieren, da es in den beiden Spalten unterschiedliche Werte hat. Unser Ansatz erkennt es jedoch korrekt als nicht vorhanden, da es bereits in df2 mit den gleichen Werten für beide Spalten vorhanden ist.
Das obige ist der detaillierte Inhalt vonWie kann man eindeutige Zeilen in Pandas-DataFrames beim Vergleich zweier DataFrames effizient identifizieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
