Kauf mir einen Kaffee☕
*Mein Beitrag erklärt Oxford 102 Flower.
Flowers102() kann den Oxford 102 Flower-Datensatz wie unten gezeigt verwenden:
*Memos:
from torchvision.datasets import Flowers102 train_data = Flowers102( root="data" ) train_data = Flowers102( root="data", split="train", transform=None, target_transform=None, download=False ) val_data = Flowers102( root="data", split="val" ) test_data = Flowers102( root="data", split="test" ) len(train_data), len(val_data), len(test_data) # (1020, 1020, 6149) train_data # Dataset Flowers102 # Number of datapoints: 1020 # Root location: data # split=train train_data.root # 'data' train_data._split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method Flowers102.download of Dataset Flowers102 # Number of datapoints: 1020 # Root location: data # split=train> len(set(train_data._labels)), train_data._labels # (102, # [0, 0, 0, ..., 1, ..., 2, ..., 3, ..., 4, ..., 5, ..., 6, ..., 101]) train_data[0] # (<PIL.Image.Image image mode=RGB size=754x500>, 0) train_data[1] # (<PIL.Image.Image image mode=RGB size=624x500>, 0) train_data[2] # (<PIL.Image.Image image mode=RGB size=667x500>, 0) train_data[10] # (<PIL.Image.Image image mode=RGB size=500x682>, 1) train_data[20] # (<PIL.Image.Image image mode=RGB size=667x500>, 2) val_data[0] # (<PIL.Image.Image image mode=RGB size=606x500>, 0) val_data[1] # (<PIL.Image.Image image mode=RGB size=667x500>, 0) val_data[2] # (<PIL.Image.Image image mode=RGB size=500x628>, 0) val_data[10] # (<PIL.Image.Image image mode=RGB size=500x766>, 1) val_data[20] # (<PIL.Image.Image image mode=RGB size=624x500>, 2) test_data[0] # (<PIL.Image.Image image mode=RGB size=523x500>, 0) test_data[1] # (<PIL.Image.Image image mode=RGB size=666x500>, 0) test_data[2] # (<PIL.Image.Image image mode=RGB size=595x500>, 0) test_data[20] # (<PIL.Image.Image image mode=RGB size=500x578>, 1) test_data[60] # (<PIL.Image.Image image mode=RGB size=500x625>, 2) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, lab = data[j] plt.imshow(X=im) plt.title(label=lab) plt.tight_layout() plt.show() train_ims = (0, 1, 2, 10, 20, 30, 40, 50, 60, 70) val_ims = (0, 1, 2, 10, 20, 30, 40, 50, 60, 70) test_ims = (0, 1, 2, 20, 60, 80, 116, 161, 186, 206) show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=train_data, ims=val_ims, main_title="val_data") show_images(data=test_data, ims=test_ims, main_title="test_data")
Das obige ist der detaillierte Inhalt vonBlumen in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!