


Warum schlägt meine Python-Regex-\b-Wortgrenze fehl und wie kann ich das Problem beheben?
Wortgrenze (b) in regulären Python-Ausdrücken mit re-Modul
Wenn Sie mit regulären Ausdrücken in Python arbeiten und das re-Modul verwenden, können Sie dies tun stoßen auf Verwirrung hinsichtlich des Verhaltens des Wortgrenzenausdrucks (b). Diese Antwort behebt ein häufiges Problem, mit dem Benutzer konfrontiert sind, wenn sie versuchen, Wortgrenzen abzugleichen.
Der b-Ausdruck, der normalerweise zur Identifizierung der Grenze zwischen einem Wort und einem anderen Zeichen verwendet wird, scheint in bestimmten Szenarien fehlzuschlagen. Betrachten Sie das folgende Beispiel:
>>> x = 'one two three' >>> y = re.search("\btwo\b", x)
Erwartungsgemäß sollte ein Übereinstimmungsobjekt zurückgegeben werden, aber stattdessen ist es None. Dieses verwirrende Ergebnis könnte zu der Frage führen, ob b in Python unterstützt wird.
Das Problem liegt jedoch nicht im b-Ausdruck selbst, sondern in der Zeichenfolge, mit der Sie arbeiten. In Python erfordern Zeichenfolgen, die Backslashes enthalten, eine besondere Behandlung als Escape-Sequenzen. Um dies zu vermeiden, sollten Sie Rohzeichenfolgen verwenden.
>>> x = 'one two three' >>> y = re.search(r"\btwo\b", x) >>> y <_sre.SRE_Match object at 0x100418a58>
Durch Hinzufügen des Präfixes „r“ erstellen Sie eine Rohzeichenfolge, in der Backslashes als Literalzeichen behandelt werden, einschließlich des b-Ausdrucks. Dadurch kann Python die Wortgrenze korrekt anpassen.
Alternativ können Sie auch die Funktion re.compile() verwenden, um ein reguläres Ausdrucksmuster zu erstellen, das das Wort enthält, mit dem Sie übereinstimmen möchten:
word = 'two' k = re.compile(r'\b%s\b' % word, re.I)
Dieser Ansatz führt zu einem kompilierten Muster, das effizient auf mehrere Zeichenfolgen angewendet oder in komplexen regulären Ausdrucksoperationen verwendet werden kann.
Zusammenfassend lässt sich sagen, dass man unbedingt Rohzeichenfolgen oder ähnliches verwenden muss re.compile()-Funktion für die ordnungsgemäße Verarbeitung von Wortgrenzenausdrücken im re-Modul von Python.
Das obige ist der detaillierte Inhalt vonWarum schlägt meine Python-Regex-\b-Wortgrenze fehl und wie kann ich das Problem beheben?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
