


Multiprocessing oder Threading in Python: Welcher Ansatz passt am besten zu meiner Anwendung?
Multiprocessing vs. Threading in Python: Eine umfassende Analyse
Das Verständnis der Nuancen zwischen Multiprocessing und Threading in Python ist entscheidend für die Optimierung der Codeleistung. Während beide Techniken die Parallelität erleichtern, weisen sie unterschiedliche Merkmale auf, die ihre Eignung für verschiedene Szenarien bestimmen. Lassen Sie uns die Vor- und Nachteile jedes Einzelnen genauer untersuchen, um Ihnen dabei zu helfen, die beste Wahl für Ihre Anwendung zu treffen.
Vorteile von Multiprocessing
- Separater Speicherplatz : Prozesse verfügen über einen eigenen Speicherbereich, der sie vor möglichen Speicherbeschädigungen schützt Probleme.
- Code-Einfachheit: Multiprocessing-Code folgt oft einem einfachen Muster, was die Komplexität reduziert.
- Native Multiprocessing-Unterstützung: Pythons Multiprocessing-Modul ahmt die Threading-Schnittstelle nach , bietet nahtlose Integration.
- GIL Bypass: Multiprocessing umgeht den Global Interpreter Lock (GIL), wodurch mehrere CPUs und Kerne gleichzeitig genutzt werden können.
- Synchronisierungsvereinfachung: Die Nutzung gemeinsam genutzten Speichers wird weitgehend eliminiert, wodurch der Bedarf an Synchronisierungsprimitiven reduziert wird.
- Untergeordnete Prozesssteuerung: Untergeordnete Prozesse können unterbrochen oder beendet werden, was Flexibilität und Fehlerbehandlung bietet Funktionen.
Vorteile des Threadings
- Geringer Speicherbedarf: Threads teilen sich den gleichen Speicherplatz, was zu einem Leichtgewicht führt Footprint.
- Shared Memory Access: Shared Memory vereinfacht den Statuszugriff von verschiedenen Kontexte.
- Responsive UIs: Threading ist ideal zum Erstellen responsiver Benutzeroberflächen.
- GIL-freundliche Erweiterungen: Bestimmte C-Erweiterungsmodule in der Python-Version die GIL, sodass sie parallel ausgeführt werden können.
- Effizienz für I/O-Bound Anwendungen:Threading eignet sich hervorragend für Situationen, in denen E/A-Vorgänge dominieren.
Auswahl der richtigen Technik
Die Entscheidung zwischen Multiprocessing und Threading hängt von der spezifische Anforderungen der Anwendung. Für CPU-intensive Aufgaben, die viel Speicher erfordern, ist Multiprocessing die bevorzugte Wahl. Andererseits eignet sich Threading für Anwendungen, die einfache Operationen, Zugriff auf gemeinsam genutzten Speicher oder Reaktionsfähigkeit erfordern. Denken Sie daran, die Kompromisse sorgfältig abzuwägen, um eine optimale Leistung und Wartbarkeit des Codes zu erreichen.
Das obige ist der detaillierte Inhalt vonMultiprocessing oder Threading in Python: Welcher Ansatz passt am besten zu meiner Anwendung?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Fastapi ...

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Über Pythonasyncio ...

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...
