Wir erhalten ein Array eindeutiger Ganzzahlen und werden gebeten, alle möglichen Permutationen zu generieren. Zwei Permutationen gelten als unterschiedlich, wenn sie sich in der Reihenfolge der Elemente unterscheiden. Für ein Array der Länge n gibt es n! mögliche Permutationen.
Die Lösung umfasst zwei Hauptschritte:
Mit diesem Ansatz können wir Generieren Sie alle Permutationen.
import java.util.ArrayList; import java.util.List; public class Permutation { public static List<List<Integer>> permute(int[] nums) { List<List<Integer>> result = new ArrayList<>(); permute(nums, 0, result); return result; } private static void permute(int[] nums, int startIndex, List<List<Integer>> result) { if (startIndex == nums.length - 1) { // Base case: If we reach the end of the array, add the current permutation to the result. List<Integer> permutation = new ArrayList<>(); for (int num : nums) { permutation.add(num); } result.add(permutation); } else { // Recursive case: Permute the remaining elements for each element at the current index. for (int i = startIndex; i < nums.length; i++) { swap(nums, startIndex, i); permute(nums, startIndex + 1, result); swap(nums, startIndex, i); } } } private static void swap(int[] nums, int i, int j) { int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } }
int[] nums = {3, 4, 6, 2, 1}; List<List<Integer>> permutations = Permutation.permute(nums); for (List<Integer> permutation : permutations) { System.out.println(permutation); }
Ausgabe:
[3, 4, 6, 2, 1] [3, 4, 6, 1, 2] [3, 4, 2, 6, 1] [3, 4, 2, 1, 6] [3, 4, 1, 6, 2] [3, 4, 1, 2, 6] [3, 2, 6, 4, 1] [3, 2, 6, 1, 4] [3, 2, 4, 6, 1] [3, 2, 4, 1, 6] [3, 2, 1, 6, 4] [3, 2, 1, 4, 6] [3, 6, 4, 2, 1] [3, 6, 4, 1, 2] [3, 6, 2, 4, 1] [3, 6, 2, 1, 4] [3, 6, 1, 4, 2] [3, 6, 1, 2, 4] [6, 3, 4, 2, 1] [6, 3, 4, 1, 2] [6, 3, 2, 4, 1] [6, 3, 2, 1, 4] [6, 3, 1, 4, 2] [6, 3, 1, 2, 4] [6, 4, 3, 2, 1] [6, 4, 3, 1, 2] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 4, 1, 3, 2] [6, 4, 1, 2, 3] [2, 3, 6, 4, 1] [2, 3, 6, 1, 4] [2, 3, 4, 6, 1] [2, 3, 4, 1, 6] [2, 3, 1, 6, 4] [2, 3, 1, 4, 6] [2, 6, 3, 4, 1] [2, 6, 3, 1, 4] [2, 6, 4, 3, 1] [2, 6, 4, 1, 3] [2, 6, 1, 3, 4] [2, 6, 1, 4, 3] [4, 3, 6, 2, 1] [4, 3, 6, 1, 2] [4, 3, 2, 6, 1] [4, 3, 2, 1, 6] [4, 3, 1, 6, 2] [4, 3, 1, 2, 6] [4, 6, 3, 2, 1] [4, 6, 3, 1, 2] [4, 6, 2, 3, 1] [4, 6, 2, 1, 3] [4, 6, 1, 3, 2] [4, 6, 1, 2, 3] [1, 3, 6, 4, 2] [1, 3, 6, 1, 4] [1, 3, 4, 6, 1] [1, 3, 4, 1, 6] [1, 3, 1, 6, 4] [1, 3, 1, 4, 6] [1, 6, 3, 4, 2] [1, 6, 3, 1, 4] [1, 6, 4, 3, 1] [1, 6, 4, 1, 3] [1, 6, 1, 3, 4] [1, 6, 1, 4, 3] [2, 4, 3, 6, 1] [2, 4, 3, 1, 6] [2, 4, 6, 3, 1] [2, 4, 6, 1, 3] [2, 4, 1, 6, 3] [2, 4, 1, 3, 6] [2, 1, 4, 3, 6] [2, 1, 4, 1, 6] [2, 1, 6, 4, 3] [2, 1, 6, 1, 4] [2, 1, 3, 4, 6] [2, 1, 3, 1, 6] [6, 2, 4, 3, 1] [6, 2, 4, 1, 3] [6, 2, 1, 4, 3] [6, 2, 1, 3, 4] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 1, 2, 4, 3] [6, 1, 2, 1, 4] [6, 1, 4, 2, 3] [6, 1, 4, 1, 3] [6, 1, 3, 1, 4] [6, 1, 3, 4, 1] [4, 2, 6, 3, 1] [4, 2, 6, 1, 3] [4, 2, 1, 6, 3] [4, 2, 1, 3, 6] [4, 6, 2, 3, 1]
Das obige ist der detaillierte Inhalt vonWie kann ich mithilfe eines rekursiven Ansatzes alle möglichen Permutationen eines Arrays eindeutiger Ganzzahlen generieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!