Heim > Backend-Entwicklung > C++ > Erkläre die Donut-ähnlichen Ohren (alte Teil-Letzte)

Erkläre die Donut-ähnlichen Ohren (alte Teil-Letzte)

DDD
Freigeben: 2024-12-24 00:26:14
Original
916 Leute haben es durchsucht

Explaining donut like ears old Part-Last)

Der vollständige Code für C lautet

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

typedef struct {
    double a1;
    double a2;
    double a3;
} singleRow;

typedef struct {
    singleRow a1;
    singleRow a2;
    singleRow a3;
} Matrix;

singleRow multiply(singleRow m1, Matrix m2) {
    singleRow res;
    res.a1 = m1.a1 * m2.a1.a1 + m1.a2 * m2.a2.a1 + m1.a3 * m2.a3.a1;
    res.a2 = m1.a1 * m2.a1.a2 + m1.a2 * m2.a2.a2 + m1.a3 * m2.a3.a2;
    res.a3 = m1.a1 * m2.a1.a3 + m1.a2 * m2.a2.a3 + m1.a3 * m2.a3.a3;
    return res;
}

int main() {
  int screen_width = 80, height = 22;
  char buffer[1760];
  float zBuffer[1760];
  float A = 0, B = 0;
  int R2 = 2, R1 = 1;
  printf("\x1b[2J");
  while (1) {
    memset(buffer, ' ', 1760);
    memset(zBuffer, 0, 7040);
      for (float theta = 0; theta < 6.28; theta += 0.07) {
        for (float phi = 0; phi < 6.28; phi += 0.02) {
          singleRow circle = {2 + cos(theta), sin(theta), 0};
          // rotation on Y-axis
          Matrix Ry = {{cos(phi), 0, sin(phi)}, {0, 1, 0}, {-sin(phi), 0, cos(phi)}};
          // rotation on X-axis
          Matrix Rx = {{1, 0, 0}, {0, cos(A), sin(A)}, {0, -sin(A), cos(A)}};
          // rotation on Z-axis
          Matrix Rz = {{cos(B), sin(B), 0}, {-sin(B), cos(B), 0}, {0, 0, 1}};

          singleRow donut = multiply(circle, Ry);
          singleRow rotateX = multiply(donut, Rx);
          // We will consider it as [Nx, Ny, Nz]
          singleRow spinningDonut = multiply(rotateX, Rz);
          float reciNz = 1 / (spinningDonut.a3 + 5);

          int x = 40 + 30 * spinningDonut.a1 * reciNz;
          int y = 12 + 15 * spinningDonut.a2 * reciNz;

          // o is index of current buffer
          int o = x + screen_width * y;

          int L = 8 * (spinningDonut.a2 - spinningDonut.a3 + 2 * cos(B) * sin(A) * sin(phi)
            - 2 * cos(phi) * cos(theta) * sin(B)
            - 2 * cos(phi) * sin(B)
            + 2 * cos(A) * sin(phi)
          );

          // donut luminicity will be seen by these characters
          // these 12
          char charOut[] = ".,-~:;=!*#$@";

          if (x < screen_width && y < height && zBuffer[o] < reciNz) {
            zBuffer[o] = reciNz;
            // If L < 0, . will be buffer
            buffer[o] = charOut[L > 0 ? L : 0];
          }
        }
      }
    // Clear screen
    printf("\x1b[H");
    for (int i = 0; i <1761; i++) {
      // On every 80th character, new line will be printed
      // If there's a reminder then buffer printed
      putchar(i % 80 ? buffer[i] : 10);
      A += 0.00004;
      B += 0.00002;
    }
    // Timer to slow down speed a bit
    usleep(10000);
  }
  return 0;
}
Nach dem Login kopieren

Der vollständige Code für Java ist

import java.util.Arrays;

class singleRow {
  public double a1;
  public double a2;
  public double a3;
  public singleRow(double a1, double a2, double a3) {
    this.a1 = a1;
    this.a2 = a2;
    this.a3 = a3;
  }
}
class Matrix {
  public singleRow a1;
  public singleRow a2;
  public singleRow a3;
  public Matrix(singleRow a1, singleRow a2, singleRow a3) {
    this.a1 = new singleRow(a1.a1, a1.a2, a1.a3);
    this.a2 = new singleRow(a2.a1, a2.a2, a2.a3);
    this.a3 = new singleRow(a3.a1, a3.a2, a3.a3);
  }
  public static singleRow multiply(singleRow m1, Matrix m2) {
    singleRow res = new singleRow(0, 0, 0);
    res.a1 = (m1.a1 * m2.a1.a1) + (m1.a2 * m2.a2.a1) + (m1.a3 * m2.a3.a1);
    res.a2 = (m1.a1 * m2.a1.a2) + (m1.a2 * m2.a2.a2) + (m1.a3 * m2.a3.a2);
    res.a3 = (m1.a1 * m2.a1.a3) + (m1.a2 * m2.a2.a3) + (m1.a3 * m2.a3.a3);
    return res;
  }
}


public class Main {
public static void main() {
  int screen_width = 80, height = 22;
  char[] buffer = new char[1760];
  double[] zBuffer = new double[1760];
  double A = 0, B = 0;
  int R2 = 2, R1 = 1;
  System.out.print("\u001b[2J");
  while (true) {
    Arrays.fill(buffer, 0, 1760, ' ');
    Arrays.fill(zBuffer, 0, 1760, 0);
      for (float theta = 0; theta < 6.28; theta += 0.07) {
        for (float phi = 0; phi < 6.28; phi += 0.02) {
          singleRow circle = {2 + Math.cos(theta), Math.sin(theta), 0};
          // rotation on Y-axis
          Matrix Ry = new Matrix(
          new singleRow(Math.cos(phi), 0, Math.sin(phi)),
          new singleRow(0, 1, 0),
          new singleRow(-Math.sin(phi), 0, Math.cos(phi))
        );
        // rotation on X-axis
        Matrix Rx = new Matrix(
          new singleRow(1, 0, 0),
          new singleRow(0, Math.cos(A), Math.sin(A)),
          new singleRow(0, -Math.sin(A), Math.cos(A))
        );
        // rotation on Z-axis
        Matrix Rz = new Matrix(
          new singleRow(Math.cos(B), Math.sin(B), 0),
          new singleRow(-Math.sin(B), Math.cos(B), 0),
          new singleRow(0, 0, 1)
        );

          singleRow donut = Matrix.multiply(circle, Ry);
          singleRow rotateX = Matrix.multiply(donut, Rx);
          // We will consider it as [Nx, Ny, Nz]
          singleRow spinningDonut = Matrix.multiply(rotateX, Rz);
          float reciNz = 1 / (spinningDonut.a3 + 5);

          int x = 40 + 30 * spinningDonut.a1 * reciNz;
          int y = 12 + 15 * spinningDonut.a2 * reciNz;

          // o is index of current buffer
          int o = x + screen_width * y;

          int L = 8 * (spinningDonut.a2 - spinningDonut.a3 
            + 2 * Math.cos(B) * Math.sin(A) * Math.sin(phi)
            - 2 * Math.cos(phi) * Math.cos(theta) * Math.sin(B)
            - 2 * Math.cos(phi) * Math.sin(B)
            + 2 * Math.cos(A) * Math.sin(phi)
          );

          // donut luminicity will be seen by these characters
          // these 12
          char[] charOpts = {'.', ',', '-', '~', ':', ';', '=', '!', '*', '#', '$', '@'};

          if (x < screen_width && y < height && zBuffer[o] < reciNz) {
            zBuffer[o] = reciNz;
            // If L < 0, . will be buffer
            buffer[o] = charOut[L > 0 ? L : 0];
          }
        }
      }
    // Clear screen
    System.out.print("\u001b[H");
    for (int i = 0; i <1761; i++) {
      // On every 80th character, new line will be printed
      // If there's a reminder then buffer printed
      System.out.print(i % 80 ? buffer[i] : 10);
      A += 0.00004;
      B += 0.00002;
    }
  }
}
}
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonErkläre die Donut-ähnlichen Ohren (alte Teil-Letzte). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage