


Projekt Mata Kuliah Künstliche Intelligenz - Gesichtsausdruckserkennung
Kurze Erklärung
Das Projekt „Face Expression Recognition“ zielt darauf ab, menschliche Gesichtsausdrücke mithilfe der Methode Convolutional Neural Network (CNN) zu erkennen. Der CNN-Algorithmus wird angewendet, um visuelle Daten wie Gesichtsbilder im Graustufenformat zu analysieren, die dann in sieben grundlegende Ausdruckskategorien eingeteilt werden: glücklich, traurig, wütend, überrascht, ängstlich, angewidert und neutral. Dieses Modell wurde mit dem FER2013-Datensatz trainiert und erreichte nach dem Training über 500 Epochen eine Genauigkeit von 91,67 %.
Projektziele
Dieses Projekt „Gesichtsausdruckserkennung“ ist das Abschlussprojekt des Kurses „Künstliche Intelligenz“, in dem in diesem Projekt Erfolge erzielt werden müssen, darunter:
- Entwicklung eines auf künstlicher Intelligenz basierenden Gesichtsausdruckerkennungssystems. Von diesem System wird erwartet, dass es in der Lage ist, Emotionen, die von Gesichtsausdrücken ausgehen, automatisch und genau zu erkennen.
- Experimentieren Sie mit maschinellen Lernalgorithmen, um die Genauigkeit der Gesichtsausdruckerkennung zu verbessern. In diesem Projekt wird der CNN-Algorithmus getestet, um zu verstehen, inwieweit dieses Modell in der Lage ist, komplexe Muster in Gesichtsbildern zu erkennen. Dieser Aufwand umfasst auch die Optimierung von Modellparametern, das Hinzufügen von Trainingsdaten und die Verwendung von Methoden zur Datenerweiterung.
Tech-Stack verwendet
- Framework: Python verwendet Bibliotheken wie TensorFlow/Keras für die CNN-Implementierung.
- Datensatz: Der verwendete Datensatz ist FER2013 (Facial Expression Recognition 2013), der 35.887 Graustufenbilder von Gesichtern mit den Abmessungen 48x48 Pixel enthält. Diese Bilder sind mit Beschriftungen versehen, die sieben grundlegende Ausdruckskategorien abdecken.
- Tools:
- NumPy und Pandas zur Datenmanipulation.
- Matplotlib zur Visualisierung.
- Haarkaskade zur Gesichtserkennung von der Kamera.
Ergebnisse
- Glücklich
- Traurig
- Wütend
- Neutral
- Überrascht
- Angst
- Ekelhaft
Die Probleme und wie ich damit umgehe
Das Problem der Unterschiede in der Beleuchtung, die sich auf die Genauigkeit auswirken.
Beleuchtungsschwankungen können die Modellgenauigkeit beeinträchtigen. Um dieses Problem zu lösen, wird eine Datennormalisierung durchgeführt, um sicherzustellen, dass die Beleuchtung im Bild gleichmäßiger ist, sodass Muster in Gesichtsbildern besser erkannt werden können.Ähnliche Komplexität von Ausdrücken.
Einige Ausdrücke wie „Angst“ und „überrascht“ weisen ähnliche Merkmale auf, die für das Modell schwer zu unterscheiden sind. Die implementierte Lösung besteht darin, Datenerweiterungen wie Drehung, Zoom, Spiegelung und Kontraständerungen durchzuführen, um die Generalisierungsfähigkeit des Modells auf neue Daten zu erhöhen.Ziemlich begrenzter Datensatz
Der FER2013-Datensatz ist zwar recht umfangreich, deckt jedoch nicht das gesamte Spektrum an Gesichtsvarianten weltweit ab. Um den Datensatz anzureichern, habe ich Datenerweiterungstechniken verwendet und Daten aus anderen relevanten Quellen hinzugefügt, um eine bessere Darstellung der Gesichtsausdrücke zu erstellen.
Gelernte Lektionen
Dieses Projekt bietet tiefe Einblicke, wie auf künstlicher Intelligenz basierende Systeme zur Erkennung von Gesichtsausdrücken eingesetzt werden können. Der Entwicklungsprozess zeigt die Bedeutung von:
- Datenvorverarbeitung zur Behebung von Beleuchtungsproblemen und zur Verbesserung der Datenqualität.
- Experimentieren Sie Trainingsparameter, um die optimale Kombination zu erhalten, z. B. das Festlegen der Anzahl der Epochen, der Lernrate und der Stapelgröße.
- Erhöhte Vielfalt an Trainingsdaten durch Erweiterung, um die Modellleistung im Vergleich zu realen Daten zu verbessern.
Durch die Bewältigung bestehender Herausforderungen gelang es diesem Projekt, ein Modell zur Erkennung von Gesichtsausdrücken zu entwickeln, das auf verschiedene Anwendungen wie Mensch-Computer-Interaktion, Emotionsanalyse und psychologische Überwachung angewendet werden kann.
Das obige ist der detaillierte Inhalt vonProjekt Mata Kuliah Künstliche Intelligenz - Gesichtsausdruckserkennung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
