Heim Backend-Entwicklung Python-Tutorial Wie kann ich einen großen Datenrahmen effizient in einzelne Datenrahmen nach Teilnehmer-ID aufteilen?

Wie kann ich einen großen Datenrahmen effizient in einzelne Datenrahmen nach Teilnehmer-ID aufteilen?

Dec 30, 2024 am 10:25 AM

How Can I Efficiently Split a Large DataFrame into Individual DataFrames by Participant ID?

Aufteilen eines riesigen DataFrames in einzelne DataFrames nach Teilnehmer-ID

Stellen Sie sich ein Szenario vor, in dem Sie über einen riesigen DataFrame verfügen, der Daten aus einem Experiment mit 60 Teilnehmern enthält Teilnehmer. Ihr Ziel ist es, diesen umfangreichen DataFrame in 60 verschiedene DataFrames zu unterteilen, die jeweils einen einzelnen Teilnehmer darstellen. Eine wesentliche Variable, „Name“, identifiziert jeden Teilnehmer innerhalb des DataFrame eindeutig.

Ein Versuch, diese Aufgabe mithilfe einer benutzerdefinierten Funktion, „Splitframe“, zu erfüllen, hat sich als erfolglos erwiesen, was die Frage nach einer effizienteren Lösung aufwirft.

Ein überlegener Ansatz: Data Frame Slicing

Eine alternative Strategie beinhaltet die Verwendung von Slicing Techniken zum Trennen des DataFrame. So geht's:

  1. Generieren Sie mithilfe der Spalte „Names“ des DataFrames eine eindeutige Liste von Teilnehmernamen („UniqueNames“).
  2. Erstellen Sie ein Wörterbuch, um die einzelnen DataFrames unterzubringen die Liste „UniqueNames“ als Schlüssel.
  3. Durchlaufen Sie jeden Teilnehmernamen und weisen Sie die entsprechenden Daten einem separaten DataFrame innerhalb zu Wörterbuch.

Dieser Ansatz, der Slicing verwendet, bietet eine einfachere und effizientere Methode zum Erstellen individueller DataFrames für jeden Teilnehmer:

# Create a DataFrame with a 'Names' column
data = pd.DataFrame({
    'Names': ['Joe', 'John', 'Jasper', 'Jez'] * 4,
    'Ob1': np.random.rand(16),
    'Ob2': np.random.rand(16)
})

# Extract unique participant names
UniqueNames = data['Names'].unique()

# Initialize a dictionary to store individual DataFrames
DataFrameDict = {elem: pd.DataFrame() for elem in UniqueNames}

# Populate the dictionary with individual DataFrames
for key in DataFrameDict.keys():
    DataFrameDict[key] = data[data['Names'] == key]
Nach dem Login kopieren

Zugriff auf einzelne DataFrames

Um auf einen bestimmten DataFrame für einen bestimmten Teilnehmer zuzugreifen, verwenden Sie einfach den Wörterbuchschlüssel, der dem Namen des Teilnehmers entspricht, wie gezeigt unten:

DataFrameDict['Joe']
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWie kann ich einen großen Datenrahmen effizient in einzelne Datenrahmen nach Teilnehmer-ID aufteilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Apr 02, 2025 am 06:27 AM

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Apr 02, 2025 am 06:45 AM

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...

See all articles