


Warum ist die Verwendung von „eval()' in der objektorientierten Programmierung gefährlich?
Warum die Ausführung von willkürlichem Code gefährlich ist
Im Zusammenhang mit der objektorientierten Programmierung wird aufgrund möglicher Sicherheitsrisiken und -nachteile generell von der Verwendung der Eval-Funktion abgeraten. Betrachten Sie die folgende Klasse:
class Song: attsToStore = ('Name', 'Artist', 'Album', 'Genre', 'Location') def __init__(self): for att in self.attsToStore: exec 'self.%s=None'%(att.lower()) in locals() def setDetail(self, key, val): if key in self.attsToStore: exec 'self.%s=val'%(key.lower()) in locals()
Obwohl dieser Code zum dynamischen Festlegen und Abrufen von Attributen praktisch erscheinen mag, birgt er die folgenden Risiken:
- Unsicherheit: eval ermöglicht die Ausführung beliebigen Codes und macht ihn dadurch anfällig für böswillige Angriffe. Externe Eingaben oder Daten könnten ausgenutzt werden, um nicht autorisierte Vorgänge auszuführen.
- Debugging-Schwierigkeit: Durch die Auswertung verursachte Fehler sind schwer zu verfolgen und zu beheben, da sie vom ausgeführten Code selbst und nicht vom Original stammen können Python-Skript.
- Leistungsaufwand: Bei der Auswertung wird Code dynamisch interpretiert und ausgeführt, was ineffizient sein kann im Vergleich zur expliziten Zuweisung oder Verwendung von Attributen.
Alternativer Ansatz mit setattr
Um das Problem der dynamischen Attributzuweisung ohne diese Risiken anzugehen, können Sie stattdessen die Funktion setattr verwenden:
class Song: attsToStore = ('Name', 'Artist', 'Album', 'Genre', 'Location') def __init__(self): for att in self.attsToStore: setattr(self, att.lower(), None) def setDetail(self, key, val): if key in self.attsToStore: setattr(self, key.lower(), val)
Mit setattr können Sie die Attribute des Song-Objekts dynamisch ändern, ohne dass die damit verbundenen potenziellen Sicherheits- und Debugging-Probleme auftreten eval.
Obwohl es seltene Fälle gibt, in denen die Verwendung von eval oder exec notwendig sein kann, ist die bewusste Übernahme solcher Praktiken von entscheidender Bedeutung, um Schwachstellen zu verhindern und die Codequalität aufrechtzuerhalten.
Das obige ist der detaillierte Inhalt vonWarum ist die Verwendung von „eval()' in der objektorientierten Programmierung gefährlich?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.
