Inhaltsverzeichnis
Workflows für „Große Datenmengen“ in Pandas
Workflow für die Manipulation großer Datenmengen mit Pandas
Beispiel aus der Praxis
Zusätzliche Überlegungen
Heim Backend-Entwicklung Python-Tutorial Wie kann ich „Large Data' mit Pandas effizient verwalten und verarbeiten?

Wie kann ich „Large Data' mit Pandas effizient verwalten und verarbeiten?

Dec 31, 2024 am 11:14 AM

How Can I Efficiently Manage and Process

Workflows für „Große Datenmengen“ in Pandas

Beim Umgang mit Datensätzen, die zu groß sind, um in den Speicher zu passen, aber klein genug für eine Festplatte, ist es wichtig, effektiv zu etablieren Workflows zur Verwaltung „großer Datenmengen“. In diesem Artikel werden Best Practices zum Importieren, Abfragen und Aktualisieren von Daten mit Tools wie HDFStore und MongoDB erläutert.

Workflow für die Manipulation großer Datenmengen mit Pandas

Laden von Flatfiles in eine permanente Datenbankstruktur

Um Flatfiles in eine permanente Datenbank auf der Festplatte zu laden, sollten Sie die Verwendung von HDFStore in Betracht ziehen. Dadurch können Sie große Datensätze auf der Festplatte speichern und nur die erforderlichen Teile zur Analyse in Pandas-Datenrahmen abrufen.

Abfragen der Datenbank zum Abrufen von Daten für Pandas

Sobald die Daten vorliegen gespeichert ist, können Abfragen ausgeführt werden, um Datenteilmengen abzurufen. MongoDB ist eine alternative Option, die diesen Prozess vereinfacht.

Aktualisieren der Datenbank nach der Manipulation von Teilen in Pandas

Um die Datenbank mit neuen Daten von Pandas zu aktualisieren, hängen Sie die neuen Spalten an mit HDFStore in die bestehende Datenbankstruktur einbinden. Beim Anhängen neuer Spalten ist es jedoch wichtig, Datentypen zu berücksichtigen, da dies die Effizienz beeinträchtigen kann.

Beispiel aus der Praxis

Das folgende Beispiel zeigt ein typisches Szenario, in dem diese Workflows angewendet werden:

  1. Große Flatfiles importieren: Große Flatfile-Daten iterativ in eine permanente Datenbank auf der Festplatte importieren Struktur.
  2. Pandas-Datenrahmen abfragen: Datenbank abfragen, um Teilmengen von Daten in speichereffiziente Pandas-Datenrahmen abzurufen.
  3. Neue Spalten erstellen: Ausführen Operationen an den ausgewählten Spalten, um neue zusammengesetzte Spalten zu erstellen.
  4. Neue Spalten anhängen: Hängen Sie die neu erstellten Spalten beispielsweise mit HDFStore an die Datenbankstruktur an.

Zusätzliche Überlegungen

Beim Arbeiten mit großen Datenmengen ist es wichtig, einen strukturierten Workflow zu definieren, z die oben beschriebene. Dies trägt dazu bei, Komplikationen zu minimieren und die Effizienz der Datenverwaltung zu steigern.

Ein weiterer wichtiger Aspekt ist das Verständnis der Art Ihrer Daten und der durchgeführten Vorgänge. Wenn beispielsweise zeilenweise Vorgänge ausgeführt werden, kann das Speichern von Daten im zeilenweisen Format (z. B. mithilfe von Pytables) die Effizienz verbessern.

Es ist auch wichtig, das optimale Gleichgewicht zwischen Speichereffizienz und Abfrageleistung zu ermitteln . Der Einsatz von Komprimierungstechniken und die Einrichtung von Datenspalten können den Speicherplatz optimieren und die Unterteilung auf Zeilenebene beschleunigen.

Durch die Einhaltung dieser Best Practices bei der Arbeit mit großen Datenmengen in Pandas können Sie Ihre Datenanalyseprozesse rationalisieren und eine bessere Leistung erzielen Zuverlässigkeit.

Das obige ist der detaillierte Inhalt vonWie kann ich „Large Data' mit Pandas effizient verwalten und verarbeiten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

See all articles