Kauf mir einen Kaffee☕
*Mein Beitrag erklärt any().
all() kann prüfen, ob alle Elemente eines 0D- oder mehr D-Tensors wahr sind, und den 0D- oder mehr D-Tensor von null oder mehr Elementen erhalten, wie unten gezeigt:
*Memos:
import torch my_tensor = torch.tensor(True) torch.all(input=my_tensor) my_tensor.all() torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=(-1,)) # tensor(True) my_tensor = torch.tensor([True, False, True, False]) torch.all(input=my_tensor) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=(-1,)) # tensor(False) my_tensor = torch.tensor([[True, False, True, False], [True, False, True, False]]) torch.all(input=my_tensor) torch.all(input=my_tensor, dim=(0, 1)) torch.all(input=my_tensor, dim=(0, -1)) torch.all(input=my_tensor, dim=(1, 0)) torch.all(input=my_tensor, dim=(1, -2)) torch.all(input=my_tensor, dim=(-1, 0)) torch.all(input=my_tensor, dim=(-1, -2)) torch.all(input=my_tensor, dim=(-2, 1)) torch.all(input=my_tensor, dim=(-2, -1)) # tensor(False) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=-2) # tensor([True, False, True, False]) torch.all(input=my_tensor, dim=1) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(-1,)) # tensor([False, False]) my_tensor = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[0., 1., 2., 3.], [4., 5., 6., 7.]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j], [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[]]) torch.all(input=my_tensor) # tensor(True) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-2) # tensor([], dtype=torch.bool) torch.all(input=my_tensor, dim=1) torch.all(input=my_tensor, dim=-1) # tensor([True])
Das obige ist der detaillierte Inhalt vonalles in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!