


Wie übermittle ich sowohl JSON als auch Dateien in einer FastAPI-POST-Anfrage?
Wie füge ich sowohl eine Datei als auch einen JSON-Text in einer FastAPI-POST-Anfrage hinzu?
In FastAPI können Sie nicht sowohl JSON-Daten als auch Dateien einsenden eine einzelne Anfrage, wenn Sie den Text als JSON deklarieren. Stattdessen müssen Sie die Multipart-/Formulardatenkodierung verwenden. Hier sind einige Methoden, um dies zu erreichen:
Methode 1: Datei und Formular verwenden
# Assuming you have a DataConfiguration model for the JSON data from fastapi import FastAPI, File, UploadFile from pydantic import BaseModel app = FastAPI() class DataConfiguration(BaseModel): textColumnNames: list[str] idColumn: str @app.post("/data") async def data(dataConfiguration: DataConfiguration, csvFile: UploadFile = File(...)): pass # read requested id and text columns from csvFile
Methode 2: Pydantische Modelle und Abhängigkeiten verwenden
from fastapi import FastAPI, Form, File, UploadFile, Depends, Request from pydantic import BaseModel from typing import List, Optional, Dict from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates app = FastAPI() templates = Jinja2Templates(directory="templates") class Base(BaseModel): name: str point: Optional[float] = None is_accepted: Optional[bool] = False def validate_json_body(body: str = Form(...)): try: return Base.model_validate_json(body) except ValidationError as e: raise HTTPException( detail=jsonable_encoder(e.errors()), status_code=422, ) @app.post("/submit") async def submit(base: Base = Depends(validate_json_body), files: List[UploadFile] = File(...)): return { "JSON Payload": base, "Filenames": [file.filename for file in files], } @app.get("/", response_class=HTMLResponse) async def main(request: Request): return templates.TemplateResponse("index.html", {"request": request})
Methode 3: JSON als String übergeben im Körperparameter
from fastapi import FastAPI, Form, UploadFile, File from pydantic import BaseModel class Base(BaseModel): name: str point: float is_accepted: bool app = FastAPI() @app.post("/submit") async def submit(data: Base = Form(...), files: List[UploadFile] = File(...)): return { "JSON Payload": data, "Filenames": [file.filename for file in files], }
Methode 4: Verwenden einer benutzerdefinierten Klasse zur Validierung von JSON
from fastapi import FastAPI, File, UploadFile, Request from pydantic import BaseModel, model_validator from typing import Optional, List from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates import json app = FastAPI() templates = Jinja2Templates(directory="templates") class Base(BaseModel): name: str point: Optional[float] = None is_accepted: Optional[bool] = False @model_validator(mode='before') @classmethod def validate_to_json(cls, value): if isinstance(value, str): return cls(**json.loads(value)) return value @app.post("/submit") async def submit(data: Base = Body(...), files: List[UploadFile] = File(...)): return { "JSON Payload": data, "Filenames": [file.filename for file in files], } @app.get("/", response_class=HTMLResponse) async def main(request: Request): return templates.TemplateResponse("index.html", context={"request": request})
Hinweis: In-Methode 1 können Sie die Klassen File und Form zusammen verwenden, da Form eine Unterklasse von Body ist. Wenn Sie jedoch in Methode 1 Body(...) anstelle von Form(...) verwenden, funktioniert dies nicht, da FastAPI erwartet, dass sich die JSON-Daten im Anforderungstext und nicht als Formulardaten befinden.
Das obige ist der detaillierte Inhalt vonWie übermittle ich sowohl JSON als auch Dateien in einer FastAPI-POST-Anfrage?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
