Heim Backend-Entwicklung Python-Tutorial Modularisierung von SQLAlchemy-Modellen mit Mixins und Annotationen

Modularisierung von SQLAlchemy-Modellen mit Mixins und Annotationen

Jan 04, 2025 pm 08:08 PM

Modularizing SQLAlchemy Models with Mixins and Annotations
Der Aufbau skalierbarer und wartbarer Modelle erfordert oft einen modularen Ansatz, insbesondere wenn gemeinsame Verhaltensweisen oder gemeinsame Spaltentypen über mehrere Modelle hinweg verarbeitet werden. In diesem Blog erfahren Sie, wie wir Modelle mithilfe der Mixins und Annotationen von SQLAlchemy modularisieren können.
   

Warum modularisieren?

Bei der Arbeit an Projekten stoßen wir häufig auf sich wiederholende Aufgaben, wie das Hinzufügen der Zeitstempel „created_at“ und „update_at“ zu Modellen oder das Definieren gängiger Spaltentypen wie UUID-Primärschlüssel. Die Modularisierung dieser Belange in separate Komponenten hat mehrere Vorteile:
 
1. Wiederverwendbarkeit: Gemeinsame Verhaltensweisen und Spaltendefinitionen können in mehreren Modellen verwendet werden.
2. Wartbarkeit: Änderungen an einer Stelle werden auf alle abhängigen Modelle übertragen.
3. Lesbarkeit: Eine klare Trennung der Belange erleichtert das Verständnis des Codes.

 

Erstellen eines Zeitstempel-Mixins

Mixins stellen wiederverwendbare Logik oder Felder für Modelle bereit. Definieren wir ein TimestampMixin, das automatisch die Felder „created_at“ und „update_at“ zu jedem Modell hinzufügt, das davon erbt.
 
Datei: timestamp_mixin.py

from datetime import datetime
from sqlalchemy import Column, DateTime
from sqlalchemy.ext.declarative import declared_attr

class TimestampMixin:
    @declared_attr
    def created_at(cls):
        return Column(DateTime, default=datetime.utcnow, nullable=False)

    @declared_attr
    def updated_at(cls):
        return Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
Nach dem Login kopieren
Nach dem Login kopieren
Erläuterung
  • @declared_attr: Stellt sicher, dass die Attribute dynamisch zu den erbenden Modellen hinzugefügt werden.
  • Standard und bei Aktualisierung: Zeitstempel für Erstellung und Aktualisierungen automatisch festlegen.

 

Definieren von Gemeinsamen Anmerkungen

Mit den Annotated-Typen von SQLAlchemy, die über Pythons typing.Annotated verfügbar sind, können Sie wiederverwendbare Spalteneigenschaften definieren. Sie können beispielsweise einen UUID-Primärschlüssel oder eine String-Spalte mit bestimmten Einschränkungen definieren.
 
Datei: common_annotations.py

from typing import Annotated
from uuid import uuid4
from sqlalchemy import String
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import mapped_column

uuid4pk = 
    mapped_column(UUID(as_uuid=True), primary_key=True, default=uuid4, nullable=False)
]

name = Annotated[
    str,
    mapped_column(String(30), nullable=False)
]
Nach dem Login kopieren
Erläuterung
  • UUID-Primärschlüssel: Die uuid4pk-Annotation definiert eine universell eindeutige Kennung für Primärschlüssel.
  • Namensspalte: Die Namensanmerkung stellt eine String-Spalte mit einer maximalen Länge von 30 Zeichen und keinen NULL-Werten sicher.

 

Erstellen von Modellen mit Mixins und Anmerkungen

Mithilfe der Mixins und Annotationen können wir Modelle definieren, die gemeinsames Verhalten und Eigenschaften erben und gleichzeitig die Implementierung prägnant und lesbar halten.
 
Datei:user.py

from datetime import datetime
from sqlalchemy import Column, DateTime
from sqlalchemy.ext.declarative import declared_attr

class TimestampMixin:
    @declared_attr
    def created_at(cls):
        return Column(DateTime, default=datetime.utcnow, nullable=False)

    @declared_attr
    def updated_at(cls):
        return Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
Nach dem Login kopieren
Nach dem Login kopieren
Erläuterung
  • Deklarative Basis: Die Basis dient als Grundlage für alle SQLAlchemy-Modelle.

 

Vorteile dieses Ansatzes

1. Klare Trennung der Belange

  • timestamp_mixin.py: Enthält wiederverwendbare Logik (z. B. Zeitstempel).
  • common_annotations.py: Definiert allgemeine Spalteneigenschaften (z. B. UUIDs, Zeichenfolgen).
  • user.py: Kombiniert diese Bausteine ​​zu konkreten Modellen.

2. Einfache Wartung

  • Wenn die Funktionsweise von Zeitstempeln geändert oder Spalteneinschränkungen aktualisiert werden müssen, müssen nur die Dateien timestamp_mixin.py oder common_annotations.py geändert werden. Die Änderungen werden automatisch auf alle abhängigen Modelle übertragen.

3. Skalierbarkeit

  • Wenn das Projekt wächst, erleichtert diese Struktur das Hinzufügen neuer Verhaltensweisen oder Feldtypen, ohne dass Redundanz entsteht.

   

Letzte Gedanken

Das Modularisieren von Modellen mit den Mixins und Annotationen von SQLAlchemy ist eine gute Strategie für den Umgang mit gemeinsam genutzten Funktionen und Eigenschaften. Dieser Ansatz reduziert nicht nur Duplikate, sondern steht auch im Einklang mit Best Practices für sauberen, wartbaren Code.

Das obige ist der detaillierte Inhalt vonModularisierung von SQLAlchemy-Modellen mit Mixins und Annotationen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1672
14
PHP-Tutorial
1277
29
C#-Tutorial
1257
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles