Heim > Backend-Entwicklung > Python-Tutorial > Unsqueeze in PyTorch

Unsqueeze in PyTorch

Susan Sarandon
Freigeben: 2025-01-05 04:49:46
Original
334 Leute haben es durchsucht

unsqueeze in PyTorch

Kauf mir einen Kaffee☕

*Mein Beitrag erklärt Squeeze().

unsqueeze() kann den 1D- oder mehr D-Tensor von null oder mehr Elementen mit zusätzlicher Dimension, deren Größe 1 ist, aus dem 0D- oder mehr D-Tensor von null oder mehr Elementen abrufen, wie unten gezeigt:

*Memos:

  • unsqueeze() kann mit Torch oder einem Tensor verwendet werden.
  • Das 1. Argument (Eingabe) mit Torch oder unter Verwendung eines Tensors (Required-Type:Tensor von int, float, complex oder bool).
  • Das 2. Argument mit Torch oder das 1. Argument mit einem Tensor ist dim(Required-Type:int). *Es kann die Dimension mit der Größe 1 an einer bestimmten Position hinzugefügt werden.
import torch

my_tensor = torch.tensor([[0, 1, 2],
                          [3, 4, 5],
                          [6, 7, 8],
                          [10, 11, 12]])
torch.unsqueeze(input=my_tensor, dim=0)
my_tensor.unsqueeze(dim=0)
torch.unsqueeze(input=my_tensor, dim=-3)
# tensor([[[0, 1, 2],
#          [3, 4, 5],
#          [6, 7, 8]
#          [10, 11, 12]]])

torch.unsqueeze(input=my_tensor, dim=1)
torch.unsqueeze(input=my_tensor, dim=-2)
# tensor([[[0, 1, 2]],
#         [[3, 4, 5]],
#         [[6, 7, 8]]
#         [[10, 11, 12]]])

torch.unsqueeze(input=my_tensor, dim=2)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[0], [1], [2]],
#         [[3], [4], [5]],
#         [[6], [7], [8]],
#         [[10], [11], [12]]])

torch.unsqueeze(input=my_tensor, dim=3)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[[0], [1], [2], [3]], [[4], [5], [6], [7]]],
#         [[[8], [9], [10], [11]], [[12], [13], [14], [15]]],
#         [[[16], [17], [18], [19]], [[20], [21], [22], [23]]]])

my_tensor = torch.tensor([[0., 1., 2.],
                          [3., 4., 5.],
                          [6., 7., 8.],
                          [10., 11., 12.]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0., 1., 2.],
#          [3., 4., 5.],
#          [6., 7., 8.],
#          [10., 11., 12.]]])

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j],
                          [6.+0.j, 7.+0.j, 8.+0.j],
                          [10.+0.j, 11.+0.j, 12.+0.j]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
#          [3.+0.j, 4.+0.j, 5.+0.j],
#          [6.+0.j, 7.+0.j, 8.+0.j],
#          [10.+0.j, 11.+0.j, 12.+0.j]]])

my_tensor = torch.tensor([[True, False, True],
                          [False, True, False],
                          [True, False, True],
                          [False, True, False]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[True, False, True],
#          [False, True, False],
#          [True, False, True],
#          [False, True, False]]])
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonUnsqueeze in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:dev.to
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage