Heim Backend-Entwicklung Python-Tutorial Python-Bibliotheken zum Erstellen dynamischer Echtzeit-Daten-Dashboards

Python-Bibliotheken zum Erstellen dynamischer Echtzeit-Daten-Dashboards

Jan 07, 2025 pm 06:16 PM

ython Libraries for Building Dynamic Real-Time Data Dashboards

Entdecken Sie meine Amazon-Bücher und folgen Sie mir auf Medium für weitere Einblicke in die Datenwissenschaft! Ihre Unterstützung wird sehr geschätzt!

Pythons Fähigkeiten bei der Datenanalyse und -visualisierung sind unbestreitbar. Die Erstellung von Echtzeit-Dashboards ist eine entscheidende Fähigkeit für Datenwissenschaftler, die sich in der heutigen datengesteuerten Welt zurechtfinden. In diesem Artikel werden sieben leistungsstarke Python-Bibliotheken untersucht, die sich ideal zum Erstellen dynamischer und interaktiver Dashboards eignen.

Dash ist meine bevorzugte Bibliothek für webbasierte Analyseanwendungen. Durch die Nutzung von Flask, Plotly.js und React.js bietet es eine robuste Grundlage für Dashboards mit reaktionsfähigen Komponenten. Eine einfache Dash-Anwendung, die ein Live-Aktualisierungsdiagramm zeigt, ist unten dargestellt:

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd

app = dash.Dash(__name__)

app.layout = html.Div([
    dcc.Graph(id='live-update-graph'),
    dcc.Interval(
       # ... (rest of the code)
Nach dem Login kopieren
Nach dem Login kopieren

Dieser Code generiert ein Streudiagramm, das jede Sekunde aktualisiert wird und neue Datenpunkte einbezieht. Der Rückrufmechanismus von Dash vereinfacht die Erstellung interaktiver Elemente, die auf Benutzereingaben oder Datenänderungen reagieren.

Bokeh ist eine weitere hervorragende Bibliothek für interaktive Diagramme und Dashboards, die sich besonders für das Streaming von Daten eignet. Seine Stärke liegt in der Verarbeitung großer Datensätze und der Erstellung verknüpfter Diagramme. Hier ist eine Bokeh-Serveranwendung, die einen Echtzeit-Streaming-Plot veranschaulicht:

from bokeh.plotting import figure, curdoc
from bokeh.driving import linear
import random

# ... (rest of the code)
Nach dem Login kopieren
Nach dem Login kopieren

Dieser Code erzeugt ein Liniendiagramm, das alle 100 Millisekunden mit neuen Zufallsdaten aktualisiert wird. Der Server von Bokeh ermöglicht Aktualisierungen in Echtzeit und Interaktivität.

Streamlit ist ein Favorit für die schnelle Prototypenerstellung und Bereitstellung von Dashboards. Seine benutzerfreundliche API vereinfacht die Erstellung interaktiver Webanwendungen. Eine einfache Streamlit-App, die ein Echtzeit-Liniendiagramm generiert, ist unten dargestellt:

import streamlit as st
import pandas as pd
import numpy as np

# ... (rest of the code)
Nach dem Login kopieren

Dieser Code erstellt ein Liniendiagramm, das kontinuierlich zufällige Datenpunkte hinzufügt. Die automatische Wiederholungsfunktion von Streamlit optimiert die Visualisierungsentwicklung in Echtzeit.

Panel zeichnet sich durch die Kombination von Diagrammen aus verschiedenen Visualisierungsbibliotheken bei der Erstellung von Dashboards aus. Dies ist besonders hilfreich bei der Integration von Visualisierungen aus Matplotlib, Bokeh und Plotly. Ein Beispiel für ein Panel-Dashboard mit einer Matplotlib und einem Bokeh-Plot ist:

import panel as pn
import matplotlib.pyplot as plt
from bokeh.plotting import figure

# ... (rest of the code)
Nach dem Login kopieren

Dieser Code zeigt ein Dashboard mit einem vertikal angeordneten Matplotlib-Plot und einem Bokeh-Plot an. Die Flexibilität des Panels vereinfacht die Erstellung komplexer Layouts und interaktiver Widgets.

Plotly ist ideal für die Erstellung interaktiver Grafiken in Publikationsqualität. Seine Plotly Express API vereinfacht die Erstellung komplexer Visualisierungen mit prägnantem Code. Ein Beispiel für ein animiertes Plotly Express-Streudiagramm ist:

import plotly.express as px
import pandas as pd

# ... (rest of the code)
Nach dem Login kopieren

Dieser Code generiert ein animiertes Streudiagramm, das die Beziehung zwischen dem BIP pro Kopf und der Lebenserwartung im Zeitverlauf für verschiedene Länder veranschaulicht.

Flask-SocketIO erweitert webbasierte Dashboards durch bidirektionale Kommunikation in Echtzeit. Dies ist besonders nützlich, um Daten in Echtzeit vom Server zum Client zu übertragen. Eine einfache Flask-SocketIO-Anwendung, die zufällige Daten an den Client sendet, ist:

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd

app = dash.Dash(__name__)

app.layout = html.Div([
    dcc.Graph(id='live-update-graph'),
    dcc.Interval(
       # ... (rest of the code)
Nach dem Login kopieren
Nach dem Login kopieren

Dieser Code erstellt einen Flask-SocketIO-Server, der jede Sekunde zufällige Daten an den Client überträgt. Um diese Daten zu empfangen und anzuzeigen, ist eine zugehörige HTML-Vorlage mit JavaScript erforderlich.

HoloViz (ehemals PyViz) vereinfacht die Datenvisualisierung in Python. Es umfasst Bibliotheken wie HoloViews, GeoViews und Datashader und ermöglicht die Erstellung komplexer Dashboards mit verknüpften Visualisierungen. Hier ist ein Beispiel mit HoloViews:

from bokeh.plotting import figure, curdoc
from bokeh.driving import linear
import random

# ... (rest of the code)
Nach dem Login kopieren
Nach dem Login kopieren

Dieser Code erstellt ein Layout mit interaktiven Sinus- und Kosinuskurven.

Best Practices für Leistungsoptimierung und Responsive Design:

Berücksichtigen Sie für eine optimale Leistung, insbesondere bei großen Datenmengen, Folgendes: effiziente Datenstrukturen, Daten-Caching, asynchrone Programmierung, Datenaggregation, WebSocket-Verbindungen, Optimierung von Datenbankabfragen, verzögertes Laden und robuste Fehlerbehandlung.

Verwenden Sie für reaktionsfähige Benutzeroberflächen reaktionsfähige Designprinzipien, Ladeindikatoren, Entprellen/Drosseln, Paginierung/unendliches Scrollen, effizientes clientseitiges Rendering und optimierten JavaScript-Code.

Zusammenfassend bieten diese sieben Python-Bibliotheken leistungsstarke Tools zum Erstellen von Echtzeit-Daten-Dashboards. Die beste Wahl hängt von Ihren spezifischen Bedürfnissen ab. Durch die Kombination dieser Bibliotheken und die Implementierung von Best Practices können Sie effiziente und benutzerfreundliche Echtzeit-Daten-Dashboards erstellen – eine wertvolle Fähigkeit in der heutigen datenzentrierten Welt.


101 Bücher

(Dieser Abschnitt bleibt unverändert, da er keinen direkten Bezug zum technischen Inhalt des Artikels hat.)


Wir sind auf Medium

(Dieser Abschnitt bleibt unverändert, da er keinen direkten Bezug zum technischen Inhalt des Artikels hat.)

Das obige ist der detaillierte Inhalt vonPython-Bibliotheken zum Erstellen dynamischer Echtzeit-Daten-Dashboards. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1672
14
PHP-Tutorial
1276
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

See all articles