


Wie kann ich Daten mithilfe der Tabellenfunktion von PostgreSQL effektiv in mehreren Spalten positionieren?
Verwenden Sie Tablefunc für mehrspaltige Pivot-Daten
Bei der Verarbeitung von Daten, die mehrere Attribute und Kennzahlen enthalten, kann es für eine effiziente Analyse erforderlich sein, sie vom Langformat in das Breitformat zu konvertieren. Die Tablefunc-Funktionalität von PostgreSQL bietet eine praktische Lösung für solche Konvertierungen. Es ist jedoch wichtig, die Einschränkungen bei der Arbeit mit mehreren Pivotspalten zu verstehen.
In einer Antwort auf eine frühere Anfrage bat ein Benutzer um Anleitung zur Verwendung von tablefunc für die Pivotierung, stieß jedoch bei der Arbeit mit mehreren Pivotspalten auf Probleme. Da tablefunc konsistente zusätzliche Spalten für jeden Zeilennamen erwartet, führt die ursprüngliche Abfrage zu unvollständigen Daten.
Problem gelöst
Um dieses Problem zu beheben, halten Sie sich unbedingt an die von tablefunc angegebene Reihenfolge:
- Zeilenname: Diese Spalte muss immer an erster Stelle stehen.
- Zusätzliche Spalten (optional): Alle zusätzlichen Spalten sollten bei Bedarf nach der Spalte mit dem Zeilennamen stehen.
- Kategorie und Wert (letzte zwei Spalten): Die Spalten „Pivot-Kategorie“ und „Wert“ müssen in dieser Reihenfolge wie die letzten beiden Spalten vorliegen.
Implementierung
Im gegebenen Beispiel erfordert die gewünschte Ausgabe die Pivotierung auf zwei Spalten (Entität und Status). Dazu wurde die Abfrage wie folgt geändert:
SELECT * FROM crosstab( 'SELECT entity, timeof, status, ct FROM t4 ORDER BY 1' , 'VALUES (1), (0)' ) AS ct ( "Attribute" character , "Section" timestamp , "status_1" int , "status_0" int );
Durch die Verwendung von „entity“ als Zeilennamen und das Vertauschen der Reihenfolge von „timeof“ und „entity“ wird die Abfrage erfolgreich auf mehrere Spalten umgestellt.
Variationen mit unterschiedlichen Einstellungen
Für das in der Antwort erwähnte Setup, bei dem die Daten nach „localt“ und „entity“ sortiert sind, lautet die geänderte Abfrage wie folgt:
SELECT localt, entity , msrmnt01, msrmnt02, msrmnt03, msrmnt04, msrmnt05 -- , more? FROM crosstab( 'SELECT dense_rank() OVER (ORDER BY localt, entity)::int AS row_name , localt, entity -- additional columns , msrmnt, val FROM test -- WHERE ??? -- instead of LIMIT at the end ORDER BY localt, entity, msrmnt -- LIMIT ???' -- instead of LIMIT at the end , 'SELECT generate_series(1,5)' -- more? ) AS ct (row_name int, localt timestamp, entity int , msrmnt01 float8, msrmnt02 float8, msrmnt03 float8, msrmnt04 float8, msrmnt05 float8 -- , more? ) LIMIT 1000 -- ?!
Diese Abfrage verwendet dense_rank(), um Proxy-Zeilennamen zu generieren, und enthält eine optionale WHERE-Klausel, um die Daten vor der Verarbeitung zu filtern. Darüber hinaus wurde die LIMIT-Bedingung aus der Unterabfrage entfernt, um die Leistung zu verbessern, indem nur die erforderlichen Zeilen verarbeitet werden.
Fazit
Wenn Sie die Einschränkungen verstehen und die von tablefunc angegebene Reihenfolge einhalten, können Sie auch bei großen Datensätzen effektiv auf mehreren Spalten schwenken. Denken Sie daran, Abfragen durch die Verwendung geeigneter WHERE-Klauseln oder LIMIT-Bedingungen zu optimieren, um unnötige Verarbeitung zu vermeiden.
Das obige ist der detaillierte Inhalt vonWie kann ich Daten mithilfe der Tabellenfunktion von PostgreSQL effektiv in mehreren Spalten positionieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Die Hauptaufgabe von MySQL in Webanwendungen besteht darin, Daten zu speichern und zu verwalten. 1.Mysql verarbeitet effizient Benutzerinformationen, Produktkataloge, Transaktionsunterlagen und andere Daten. 2. Durch die SQL -Abfrage können Entwickler Informationen aus der Datenbank extrahieren, um dynamische Inhalte zu generieren. 3.Mysql arbeitet basierend auf dem Client-Server-Modell, um eine akzeptable Abfragegeschwindigkeit sicherzustellen.

InnoDB verwendet Redologs und undologische, um Datenkonsistenz und Zuverlässigkeit zu gewährleisten. 1.REDOLOogen zeichnen Datenseitenänderung auf, um die Wiederherstellung und die Durchführung der Crash -Wiederherstellung und der Transaktion sicherzustellen. 2.Strundologs zeichnet den ursprünglichen Datenwert auf und unterstützt Transaktionsrollback und MVCC.

Im Vergleich zu anderen Programmiersprachen wird MySQL hauptsächlich zum Speichern und Verwalten von Daten verwendet, während andere Sprachen wie Python, Java und C für die logische Verarbeitung und Anwendungsentwicklung verwendet werden. MySQL ist bekannt für seine hohe Leistung, Skalierbarkeit und plattformübergreifende Unterstützung, die für Datenverwaltungsanforderungen geeignet sind, während andere Sprachen in ihren jeweiligen Bereichen wie Datenanalysen, Unternehmensanwendungen und Systemprogramme Vorteile haben.

Zu den grundlegenden Operationen von MySQL gehört das Erstellen von Datenbanken, Tabellen und die Verwendung von SQL zur Durchführung von CRUD -Operationen für Daten. 1. Erstellen Sie eine Datenbank: createdatabasemy_first_db; 2. Erstellen Sie eine Tabelle: CreateTableBooks (IDINGAUTO_INCRECTIONPRIMARYKEY, Titelvarchar (100) Notnull, AuthorVarchar (100) Notnull, veröffentlicht_yearint); 3.. Daten einfügen: InsertIntoBooks (Titel, Autor, veröffentlicht_year) va

MySQL eignet sich für Webanwendungen und Content -Management -Systeme und ist beliebt für Open Source, hohe Leistung und Benutzerfreundlichkeit. 1) Im Vergleich zu Postgresql führt MySQL in einfachen Abfragen und hohen gleichzeitigen Lesevorgängen besser ab. 2) Im Vergleich zu Oracle ist MySQL aufgrund seiner Open Source und niedrigen Kosten bei kleinen und mittleren Unternehmen beliebter. 3) Im Vergleich zu Microsoft SQL Server eignet sich MySQL besser für plattformübergreifende Anwendungen. 4) Im Gegensatz zu MongoDB eignet sich MySQL besser für strukturierte Daten und Transaktionsverarbeitung.

InnoDbbufferpool reduziert die Scheiben -E/A durch Zwischenspeicherung von Daten und Indizieren von Seiten und Verbesserung der Datenbankleistung. Das Arbeitsprinzip umfasst: 1. Daten lesen: Daten von Bufferpool lesen; 2. Daten schreiben: Schreiben Sie nach der Änderung der Daten an Bufferpool und aktualisieren Sie sie regelmäßig auf Festplatte. 3. Cache -Management: Verwenden Sie den LRU -Algorithmus, um Cache -Seiten zu verwalten. 4. Lesemechanismus: Last benachbarte Datenseiten im Voraus. Durch die Größe des Bufferpool und die Verwendung mehrerer Instanzen kann die Datenbankleistung optimiert werden.

MySQL verwaltet strukturierte Daten effizient durch Tabellenstruktur und SQL-Abfrage und implementiert Inter-Tisch-Beziehungen durch Fremdschlüssel. 1. Definieren Sie beim Erstellen einer Tabelle das Datenformat und das Typ. 2. Verwenden Sie fremde Schlüssel, um Beziehungen zwischen Tabellen aufzubauen. 3.. Verbessern Sie die Leistung durch Indexierung und Abfrageoptimierung. 4. regelmäßig Sicherung und Überwachung von Datenbanken, um die Datensicherheit und die Leistungsoptimierung der Daten zu gewährleisten.

MySQL ist es wert, gelernt zu werden, da es sich um ein leistungsstarkes Open -Source -Datenbankverwaltungssystem handelt, das für Datenspeicher, Verwaltung und Analyse geeignet ist. 1) MySQL ist eine relationale Datenbank, die SQL zum Betrieb von Daten verwendet und für die strukturierte Datenverwaltung geeignet ist. 2) Die SQL -Sprache ist der Schlüssel zur Interaktion mit MySQL und unterstützt CRUD -Operationen. 3) Das Arbeitsprinzip von MySQL umfasst Client/Server -Architektur, Speicher -Engine und Abfrageoptimierer. 4) Die grundlegende Nutzung umfasst das Erstellen von Datenbanken und Tabellen, und die erweiterte Verwendung umfasst das Verbinden von Tabellen mit dem Join. 5) Zu den häufigen Fehlern gehören Syntaxfehler und Erlaubnisprobleme, und die Debugging -Fähigkeiten umfassen die Überprüfung der Syntax und die Verwendung von Erklärungskenntnissen. 6) Die Leistungsoptimierung umfasst die Verwendung von Indizes, die Optimierung von SQL -Anweisungen und die regelmäßige Wartung von Datenbanken.
