Heim Backend-Entwicklung Python-Tutorial Erstellen Sie einen KI-Code-Review-Assistenten mit Vev, Litellm und Agenta

Erstellen Sie einen KI-Code-Review-Assistenten mit Vev, Litellm und Agenta

Jan 14, 2025 am 09:33 AM

Dieses Tutorial zeigt den Aufbau eines produktionsbereiten KI-Pull-Request-Reviewers mithilfe von LLMOps-Best Practices. Die endgültige Bewerbung, die hier zugänglich ist, akzeptiert eine öffentliche PR-URL und gibt eine von der KI generierte Bewertung zurück.

Build an AI code review assistant with vev, litellm and Agenta

Anwendungsübersicht

Dieses Tutorial behandelt:

  • Codeentwicklung: PR-Unterschiede von GitHub abrufen und LiteLLM für die LLM-Interaktion nutzen.
  • Beobachtbarkeit:Implementierung von Agenta zur Anwendungsüberwachung und zum Debuggen.
  • Prompt Engineering: Iteration von Eingabeaufforderungen und Modellauswahl mithilfe von Agentas Spielplatz.
  • LLM-Bewertung:Einsatz von LLM als Richter für eine schnelle und vorbildliche Beurteilung.
  • Bereitstellung: Bereitstellung der Anwendung als API und Erstellung einer einfachen Benutzeroberfläche mit v0.dev.

Kernlogik

Der Arbeitsablauf des KI-Assistenten ist einfach: Bei gegebener PR-URL ruft er das Diff von GitHub ab und sendet es zur Überprüfung an ein LLM.

Der Zugriff auf GitHub-Diffs erfolgt über:

<code>https://patch-diff.githubusercontent.com/raw/{owner}/{repo}/pull/{pr_number}.diff</code>
Nach dem Login kopieren
Nach dem Login kopieren

Diese Python-Funktion ruft den Unterschied ab:

def get_pr_diff(pr_url):
    # ... (Code remains the same)
    return response.text
Nach dem Login kopieren

LiteLLM erleichtert LLM-Interaktionen und bietet eine konsistente Schnittstelle über verschiedene Anbieter hinweg.

prompt_system = """
You are an expert Python developer performing a file-by-file review of a pull request. You have access to the full diff of the file to understand the overall context and structure. However, focus on reviewing only the specific hunk provided.
"""

prompt_user = """
Here is the diff for the file:
{diff}

Please provide a critique of the changes made in this file.
"""

def generate_critique(pr_url: str):
    diff = get_pr_diff(pr_url)
    response = litellm.completion(
        model=config.model,
        messages=[
            {"content": config.system_prompt, "role": "system"},
            {"content": config.user_prompt.format(diff=diff), "role": "user"},
        ],
    )
    return response.choices[0].message.content
Nach dem Login kopieren

Observability mit Agenta implementieren

Agenta verbessert die Beobachtbarkeit, indem es Eingaben, Ausgaben und den Datenfluss verfolgt, um das Debuggen zu erleichtern.

Agenta initialisieren und LiteLLM-Rückrufe konfigurieren:

import agenta as ag

ag.init()
litellm.callbacks = [ag.callbacks.litellm_handler()]
Nach dem Login kopieren

Instrumentenfunktionen mit Agenta-Dekoratoren:

@ag.instrument()
def generate_critique(pr_url: str):
    # ... (Code remains the same)
    return response.choices[0].message.content
Nach dem Login kopieren

Legen Sie die Umgebungsvariable AGENTA_API_KEY fest (erhalten von Agenta) und optional AGENTA_HOST für Selbsthosting.

Build an AI code review assistant with vev, litellm and Agenta

Einen LLM-Spielplatz schaffen

Agentas benutzerdefinierte Workflow-Funktion bietet einen IDE-ähnlichen Spielplatz für die iterative Entwicklung. Der folgende Codeausschnitt demonstriert die Konfiguration und Integration mit Agenta:

from pydantic import BaseModel, Field
from typing import Annotated
import agenta as ag
import litellm
from agenta.sdk.assets import supported_llm_models

# ... (previous code)

class Config(BaseModel):
    system_prompt: str = prompt_system
    user_prompt: str = prompt_user
    model: Annotated[str, ag.MultipleChoice(choices=supported_llm_models)] = Field(default="gpt-3.5-turbo")

@ag.route("/", config_schema=Config)
@ag.instrument()
def generate_critique(pr_url:str):
    diff = get_pr_diff(pr_url)
    config = ag.ConfigManager.get_from_route(schema=Config)
    response = litellm.completion(
        model=config.model,
        messages=[
            {"content": config.system_prompt, "role": "system"},
            {"content": config.user_prompt.format(diff=diff), "role": "user"},
        ],
    )
    return response.choices[0].message.content
Nach dem Login kopieren

Betreuung und Bewertung mit Agenta

  1. Führen Sie agenta init aus und geben Sie dabei den App-Namen und den API-Schlüssel an.
  2. Führen Sie agenta variant serve app.py aus.

Dadurch wird die Anwendung über den Spielplatz von Agenta für End-to-End-Tests zugänglich gemacht. Für die Bewertung wird das LLM-as-a-Judge-Studium verwendet. Die Evaluator-Eingabeaufforderung lautet:

<code>You are an evaluator grading the quality of a PR review.
CRITERIA: ... (criteria remain the same)
ANSWER ONLY THE SCORE. DO NOT USE MARKDOWN. DO NOT PROVIDE ANYTHING OTHER THAN THE NUMBER</code>
Nach dem Login kopieren

Die Benutzeraufforderung für den Bewerter:

<code>https://patch-diff.githubusercontent.com/raw/{owner}/{repo}/pull/{pr_number}.diff</code>
Nach dem Login kopieren
Nach dem Login kopieren

Build an AI code review assistant with vev, litellm and Agenta

Build an AI code review assistant with vev, litellm and Agenta

Bereitstellung und Frontend

Die Bereitstellung erfolgt über die Benutzeroberfläche von Agenta:

  1. Navigieren Sie zur Übersichtsseite.
  2. Klicken Sie auf die drei Punkte neben der gewählten Variante.
  3. Wählen Sie „In der Produktion bereitstellen“ aus.

Build an AI code review assistant with vev, litellm and Agenta

Für die schnelle Erstellung der Benutzeroberfläche wurde ein v0.dev-Frontend verwendet.

Nächste Schritte und Schlussfolgerung

Zukünftige Verbesserungen umfassen eine schnelle Verfeinerung, die Einbeziehung des vollständigen Codekontexts und die Handhabung großer Unterschiede. In diesem Tutorial wird erfolgreich das Erstellen, Bewerten und Bereitstellen eines produktionsbereiten KI-Pull-Request-Reviewers mit Agenta und LiteLLM demonstriert.

Build an AI code review assistant with vev, litellm and Agenta

Das obige ist der detaillierte Inhalt vonErstellen Sie einen KI-Code-Review-Assistenten mit Vev, Litellm und Agenta. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1670
14
PHP-Tutorial
1273
29
C#-Tutorial
1256
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles