Inhaltsverzeichnis
Alte asynchrone Aufrufe
Synchronisierte Multi-Request-Funktionalität
Asynchrone Funktionen und Coroutinen
Vergleich asynchroner Methoden
Heim Backend-Entwicklung Python-Tutorial Interoperabilität: Asynchrone Unterstützung für Python-Updates

Interoperabilität: Asynchrone Unterstützung für Python-Updates

Jan 20, 2025 am 12:21 AM

Seit meinem letzten IoP-Update ist eine Weile vergangen. Lasst uns aufholen!

Interoperability On Python update async support

Der IoP-Befehlszeilenschnittstelle wurden wesentliche Verbesserungen hinzugefügt:

  • Namensänderung: Das Modul grongier.pex wurde in iop umbenannt, um es an das neue Branding des Projekts anzupassen.
  • Asynchrone Unterstützung: IoP unterstützt jetzt vollständig asynchrone Funktionen und Coroutinen.

Projektumbenennung

Das grongier.pex-Modul bleibt aus Gründen der Abwärtskompatibilität zugänglich, wird jedoch in einer zukünftigen Version entfernt. Nutzen Sie das Modul iop für Neuentwicklungen.

Asynchrone Funktionalitäten

Während IoP seit langem asynchrone Aufrufe unterstützt, war die direkte Nutzung asynchroner Funktionen und Coroutinen bisher nicht verfügbar. Bevor wir uns mit dieser neuen Funktion befassen, werfen wir einen Blick auf die Funktionsweise asynchroner Aufrufe in InterSystems IRIS und untersuchen zwei Beispiele.

Alte asynchrone Aufrufe

Dies veranschaulicht den traditionellen Ansatz:

from iop import BusinessProcess
from msg import MyMessage


class MyBP(BusinessProcess):

    def on_message(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        self.send_request_async("Python.MyBO", msg_one, completion_key="1")
        self.send_request_async("Python.MyBO", msg_two, completion_key="2")

    def on_response(self, request, response, call_request, call_response, completion_key):
        if completion_key == "1":
            self.response_one = call_response
        elif completion_key == "2":
            self.response_two = call_response

    def on_complete(self, request, response):
        self.log_info(f"Received response one: {self.response_one.message}")
        self.log_info(f"Received response two: {self.response_two.message}")
Nach dem Login kopieren

Dies spiegelt das asynchrone Anrufverhalten in IRIS wider. send_request_async sendet eine Anfrage an einen Geschäftsbetrieb und on_response verarbeitet die empfangene Antwort. completion_key differenziert Antworten.

Synchronisierte Multi-Request-Funktionalität

Die Möglichkeit, mehrere synchrone Anfragen gleichzeitig zu senden, ist zwar nicht ganz neu, aber bemerkenswert:

from iop import BusinessProcess
from msg import MyMessage


class MyMultiBP(BusinessProcess):

    def on_message(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        tuple_responses = self.send_multi_request_sync([("Python.MyMultiBO", msg_one),
                                                        ("Python.MyMultiBO", msg_two)])

        self.log_info("All requests have been processed")
        for target, request, response, status in tuple_responses:
            self.log_info(f"Received response: {response.message}")
Nach dem Login kopieren

In diesem Beispiel werden zwei Anfragen gleichzeitig an denselben Geschäftsvorgang gesendet. Die Antwort ist ein Tupel, das Ziel, Anfrage, Antwort und Status für jeden Aufruf enthält. Dies ist besonders nützlich, wenn die Reihenfolge der Anfragen unwichtig ist.

Asynchrone Funktionen und Coroutinen

So nutzen Sie asynchrone Funktionen und Coroutinen in IoP:

import asyncio

from iop import BusinessProcess
from msg import MyMessage


class MyAsyncNGBP(BusinessProcess):

    def on_message(self, request):

        results = asyncio.run(self.await_response(request))

        for result in results:
            print(f"Received response: {result.message}")

    async def await_response(self, request):
        msg_one = MyMessage(message="Message1")
        msg_two = MyMessage(message="Message2")

        tasks = [self.send_request_async_ng("Python.MyAsyncNGBO", msg_one),
                 self.send_request_async_ng("Python.MyAsyncNGBO", msg_two)]

        return await asyncio.gather(*tasks)
Nach dem Login kopieren

Dadurch werden mehrere Anfragen gleichzeitig mit send_request_async_ng gesendet. asyncio.gather stellt sicher, dass alle Antworten gleichzeitig erwartet werden.

Wenn Sie bis hierher mitverfolgt haben, kommentieren Sie bitte „Boomerang“! Es würde viel bedeuten. Danke!

await_response ist eine Coroutine, die mehrere Anfragen sendet und auf alle Antworten wartet.

Zu den Vorteilen der Verwendung von asynchronen Funktionen und Coroutinen gehören eine verbesserte Leistung durch parallele Anforderungen, eine verbesserte Lesbarkeit und Wartbarkeit, eine erhöhte Flexibilität durch die Verwendung des asyncio-Moduls sowie eine bessere Ausnahme- und Timeout-Behandlung.

Vergleich asynchroner Methoden

Was sind die Hauptunterschiede zwischen send_request_async, send_multi_request_sync und send_request_async_ng?

  • send_request_async: Sendet nur dann eine Anfrage und wartet auf eine Antwort, wenn on_response implementiert ist und completion_key verwendet wird. Einfach, aber für parallele Anfragen weniger skalierbar.
  • send_multi_request_sync: Sendet mehrere Anfragen gleichzeitig und wartet auf alle Antworten. Einfach zu verwenden, aber die Reihenfolge der Antworten ist nicht garantiert.
  • send_request_async_ng: Sendet mehrere Anfragen gleichzeitig und wartet auf alle Antworten, wobei die Antwortreihenfolge beibehalten wird. Erfordert asynchrone Funktionen und Coroutinen.

Viel Spaß beim Multithreading!

Das obige ist der detaillierte Inhalt vonInteroperabilität: Asynchrone Unterstützung für Python-Updates. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1672
14
PHP-Tutorial
1277
29
C#-Tutorial
1257
24
Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python für wissenschaftliches Computer: Ein detailliertes Aussehen Python für wissenschaftliches Computer: Ein detailliertes Aussehen Apr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python für die Webentwicklung: Schlüsselanwendungen Python für die Webentwicklung: Schlüsselanwendungen Apr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

See all articles