HybridSimilarity-Algorithmus
Ein tiefer Einblick in den HybridSimilarity-Algorithmus
In diesem Artikel wird der HybridSimilarity-Algorithmus untersucht, ein hochentwickeltes neuronales Netzwerk zur Bewertung der Ähnlichkeit zwischen Textpaaren. Dieses Hybridmodell integriert geschickt lexikalische, phonetische, semantische und syntaktische Vergleiche für eine umfassende Ähnlichkeitsbewertung.
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
Kernkomponenten
Das HybridSimilarity-Modell basiert auf diesen Schlüsselkomponenten:
- Satztransformatoren: Verwendet vorab trainierte Transformermodelle für die semantische Einbettungsgenerierung.
- Levenshtein-Entfernung: Berechnet die lexikalische Ähnlichkeit basierend auf Änderungen auf Zeichenebene.
- Metaphon:Bestimmt phonetische Ähnlichkeit.
- TF-IDF und Truncated SVD: Wendet Latent Semantic Analysis (LSA) für syntaktische Ähnlichkeit an.
- PyTorch: Bietet den Rahmen für den Aufbau des benutzerdefinierten neuronalen Netzwerks mit Aufmerksamkeitsmechanismen und vollständig verbundenen Schichten.
Detaillierte Aufschlüsselung
1. Modell-Setup
Die HybridSimilarity
-Klasse, die nn.Module
erweitert, initialisiert:
- Ein BERT-basiertes Satzeinbettungsmodell (
all-MiniLM-L6-v2
). - Ein TF-IDF-Vektorisierer.
- Ein Mehrkopf-Aufmerksamkeitsmechanismus.
- Ein vollständig verbundenes Netzwerk, um Merkmale zu aggregieren und den endgültigen Ähnlichkeitswert zu generieren.
self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
2. Merkmalsextraktion
Die _extract_features
-Methode berechnet mehrere Ähnlichkeitsmerkmale:
- Lexikalische Ähnlichkeit:
- Levenshtein-Verhältnis: Quantifiziert die Anzahl der Bearbeitungen (Einfügungen, Löschungen, Ersetzungen), um einen Text in einen anderen umzuwandeln.
- Jaccard-Index: Misst die Überlappung eindeutiger Wörter in beiden Texten.
features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
- Phonetische Ähnlichkeit:
- Metaphone-Kodierung: Vergleicht phonetische Darstellungen.
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
- Semantische Ähnlichkeit:
- BERT-Einbettungen werden generiert und die Kosinusähnlichkeit wird berechnet.
emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
- Syntaktische Ähnlichkeit:
- TF-IDF vektorisiert den Text und LSA wird mit
TruncatedSVD
angewendet.
- TF-IDF vektorisiert den Text und LSA wird mit
tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
- Aufmerksamkeitsbasierte Funktion:
- Mehrkopfaufmerksamkeit verarbeitet die Einbettungen und der durchschnittliche Aufmerksamkeitswert wird verwendet.
att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item()
3. Fusion neuronaler Netze
Die extrahierten Merkmale werden kombiniert und in ein vollständig verbundenes neuronales Netzwerk eingespeist. Dieses Netzwerk gibt einen Ähnlichkeitswert (0-1) aus.
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
Praktische Anwendung
Die Funktion similarity_coefficient
initialisiert das Modell und berechnet die Ähnlichkeit zwischen zwei Eingabetexten.
self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
Dies gibt einen Gleitkommawert zwischen 0 und 1 zurück, der die Ähnlichkeit darstellt.
Fazit
Der HybridSimilarity-Algorithmus bietet einen robusten Ansatz zur Textähnlichkeit, indem er verschiedene Aspekte des Textvergleichs integriert. Seine Kombination aus lexikalischer, phonetischer, semantischer und syntaktischer Analyse ermöglicht ein umfassenderes und differenzierteres Verständnis der Textähnlichkeit und eignet sich daher für verschiedene Anwendungen, einschließlich Duplikaterkennung, Text-Clustering und Informationsabruf.
Das obige ist der detaillierte Inhalt vonHybridSimilarity-Algorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.
