Inhaltsverzeichnis
Ein tiefer Einblick in den HybridSimilarity-Algorithmus
Kernkomponenten
Detaillierte Aufschlüsselung
1. Modell-Setup
2. Merkmalsextraktion
3. Fusion neuronaler Netze
Praktische Anwendung
Fazit
Heim Backend-Entwicklung Python-Tutorial HybridSimilarity-Algorithmus

HybridSimilarity-Algorithmus

Jan 21, 2025 pm 10:17 PM

HybridSimilarity Algorithm

Ein tiefer Einblick in den HybridSimilarity-Algorithmus

In diesem Artikel wird der HybridSimilarity-Algorithmus untersucht, ein hochentwickeltes neuronales Netzwerk zur Bewertung der Ähnlichkeit zwischen Textpaaren. Dieses Hybridmodell integriert geschickt lexikalische, phonetische, semantische und syntaktische Vergleiche für eine umfassende Ähnlichkeitsbewertung.

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Nach dem Login kopieren
Nach dem Login kopieren

Kernkomponenten

Das HybridSimilarity-Modell basiert auf diesen Schlüsselkomponenten:

  • Satztransformatoren: Verwendet vorab trainierte Transformermodelle für die semantische Einbettungsgenerierung.
  • Levenshtein-Entfernung: Berechnet die lexikalische Ähnlichkeit basierend auf Änderungen auf Zeichenebene.
  • Metaphon:Bestimmt phonetische Ähnlichkeit.
  • TF-IDF und Truncated SVD: Wendet Latent Semantic Analysis (LSA) für syntaktische Ähnlichkeit an.
  • PyTorch: Bietet den Rahmen für den Aufbau des benutzerdefinierten neuronalen Netzwerks mit Aufmerksamkeitsmechanismen und vollständig verbundenen Schichten.

Detaillierte Aufschlüsselung

1. Modell-Setup

Die HybridSimilarity-Klasse, die nn.Module erweitert, initialisiert:

  • Ein BERT-basiertes Satzeinbettungsmodell (all-MiniLM-L6-v2).
  • Ein TF-IDF-Vektorisierer.
  • Ein Mehrkopf-Aufmerksamkeitsmechanismus.
  • Ein vollständig verbundenes Netzwerk, um Merkmale zu aggregieren und den endgültigen Ähnlichkeitswert zu generieren.
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Nach dem Login kopieren
Nach dem Login kopieren
2. Merkmalsextraktion

Die _extract_features-Methode berechnet mehrere Ähnlichkeitsmerkmale:

  • Lexikalische Ähnlichkeit:
    • Levenshtein-Verhältnis: Quantifiziert die Anzahl der Bearbeitungen (Einfügungen, Löschungen, Ersetzungen), um einen Text in einen anderen umzuwandeln.
    • Jaccard-Index: Misst die Überlappung eindeutiger Wörter in beiden Texten.
features['levenshtein'] = levenshtein_ratio(text1, text2)
features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
Nach dem Login kopieren
  • Phonetische Ähnlichkeit:
    • Metaphone-Kodierung: Vergleicht phonetische Darstellungen.
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
Nach dem Login kopieren
  • Semantische Ähnlichkeit:
    • BERT-Einbettungen werden generiert und die Kosinusähnlichkeit wird berechnet.
emb1 = self.bert.encode(text1, convert_to_tensor=True)
emb2 = self.bert.encode(text2, convert_to_tensor=True)
features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
Nach dem Login kopieren
  • Syntaktische Ähnlichkeit:
    • TF-IDF vektorisiert den Text und LSA wird mit TruncatedSVD angewendet.
tfidf_matrix = self.tfidf.fit_transform([text1, text2])
svd = TruncatedSVD(n_components=1)
lsa = svd.fit_transform(tfidf_matrix)
features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
Nach dem Login kopieren
  • Aufmerksamkeitsbasierte Funktion:
    • Mehrkopfaufmerksamkeit verarbeitet die Einbettungen und der durchschnittliche Aufmerksamkeitswert wird verwendet.
att_output, _ = self.attention(
    emb1.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0)
)
features['attention_score'] = att_output.mean().item()
Nach dem Login kopieren
3. Fusion neuronaler Netze

Die extrahierten Merkmale werden kombiniert und in ein vollständig verbundenes neuronales Netzwerk eingespeist. Dieses Netzwerk gibt einen Ähnlichkeitswert (0-1) aus.

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Nach dem Login kopieren
Nach dem Login kopieren

Praktische Anwendung

Die Funktion similarity_coefficient initialisiert das Modell und berechnet die Ähnlichkeit zwischen zwei Eingabetexten.

self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Nach dem Login kopieren
Nach dem Login kopieren

Dies gibt einen Gleitkommawert zwischen 0 und 1 zurück, der die Ähnlichkeit darstellt.

Fazit

Der HybridSimilarity-Algorithmus bietet einen robusten Ansatz zur Textähnlichkeit, indem er verschiedene Aspekte des Textvergleichs integriert. Seine Kombination aus lexikalischer, phonetischer, semantischer und syntaktischer Analyse ermöglicht ein umfassenderes und differenzierteres Verständnis der Textähnlichkeit und eignet sich daher für verschiedene Anwendungen, einschließlich Duplikaterkennung, Text-Clustering und Informationsabruf.

Das obige ist der detaillierte Inhalt vonHybridSimilarity-Algorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1666
14
PHP-Tutorial
1273
29
C#-Tutorial
1255
24
Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

See all articles