In diesem Artikel wird der HybridSimilarity-Algorithmus untersucht, ein hochentwickeltes neuronales Netzwerk zur Bewertung der Ähnlichkeit zwischen Textpaaren. Dieses Hybridmodell integriert geschickt lexikalische, phonetische, semantische und syntaktische Vergleiche für eine umfassende Ähnlichkeitsbewertung.
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
Das HybridSimilarity-Modell basiert auf diesen Schlüsselkomponenten:
Die HybridSimilarity
-Klasse, die nn.Module
erweitert, initialisiert:
all-MiniLM-L6-v2
).self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
Die _extract_features
-Methode berechnet mehrere Ähnlichkeitsmerkmale:
features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
TruncatedSVD
angewendet.tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item()
Die extrahierten Merkmale werden kombiniert und in ein vollständig verbundenes neuronales Netzwerk eingespeist. Dieses Netzwerk gibt einen Ähnlichkeitswert (0-1) aus.
import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)
Die Funktion similarity_coefficient
initialisiert das Modell und berechnet die Ähnlichkeit zwischen zwei Eingabetexten.
self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )
Dies gibt einen Gleitkommawert zwischen 0 und 1 zurück, der die Ähnlichkeit darstellt.
Der HybridSimilarity-Algorithmus bietet einen robusten Ansatz zur Textähnlichkeit, indem er verschiedene Aspekte des Textvergleichs integriert. Seine Kombination aus lexikalischer, phonetischer, semantischer und syntaktischer Analyse ermöglicht ein umfassenderes und differenzierteres Verständnis der Textähnlichkeit und eignet sich daher für verschiedene Anwendungen, einschließlich Duplikaterkennung, Text-Clustering und Informationsabruf.
Das obige ist der detaillierte Inhalt vonHybridSimilarity-Algorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!