Heim Backend-Entwicklung Python-Tutorial Erkunden Sie die Kokoro TTS-Sprachsynthese auf Google Colab mit T4

Erkunden Sie die Kokoro TTS-Sprachsynthese auf Google Colab mit T4

Jan 27, 2025 pm 12:12 PM

Exploring Kokoro TTS Voice Synthesis on Google Colab with T4

Kokoro-82M: Erkundung leistungsstarker Text-to-Speech (TTS)-Modelle

Kokoro-82M ist ein Hochleistungs-TTS-Modell, das hochwertige Audioqualität erzeugen kann. Es unterstützt die einfache Text-zu-Sprache-Konvertierung und kann problemlos eine Sprachsynthese durchführen, indem es Gewichtungen auf Audiodateien anwendet.

Kokoro-82M auf Hugging Face

Ab Version 0.23 unterstützt Kokoro-82M auch Japanisch. Über den folgenden Link können Sie es ganz einfach ausprobieren:

[Kokoro TTS über Hugging Face Spaces] (Link zu Hugging Face Spaces sollte hier eingefügt werden)

Allerdings ist die japanische Betonung immer noch etwas unnatürlich.

In diesem Tutorial verwenden wir kokoro-onnx, eine TTS-Implementierung, die Kokoro und die ONNX-Laufzeit nutzt. Wir werden Version 0.19 (eine stabile Version) verwenden, die nur Sprachsynthese für amerikanisches Englisch und britisches Englisch unterstützt.

Wie der Titel schon sagt, wird der Code in Google Colab ausgeführt.

kokoro-onnx installieren

!git lfs install
!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch
!pip install -U kokoro-onnx
Nach dem Login kopieren

Paket wird geladen

import numpy as np
from scipy.io.wavfile import write
from IPython.display import display, Audio
from models import build_model
import torch
from models import build_model
from kokoro import generate
Nach dem Login kopieren

Führen Sie das Beispiel aus

Bevor wir die Sprachsynthese testen, führen wir das offizielle Beispiel durch. Wenn Sie den folgenden Code ausführen, wird in wenigen Sekunden Audio generiert und abgespielt.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
    'af', # 默认语音是 Bella 和 Sarah 的 50-50 混合
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]
VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
print(f'Loaded voice: {VOICE_NAME}')

text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])

display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
Nach dem Login kopieren

Sprachsynthese

Jetzt kommen wir zum Thema und testen die Sprachsynthese.

Sprachpaket definieren

  • af: Amerikanische englische Frauenstimme
  • bin: amerikanische englische männliche Stimme
  • bf: Britische englische Frauenstimme
  • bm: britische männliche Stimme
  • Wir laden jetzt alle verfügbaren Sprachpakete.
voicepack_af = torch.load(f'voices/af.pt', weights_only=True).to(device)
voicepack_af_bella = torch.load(f'voices/af_bella.pt', weights_only=True).to(device)
voicepack_af_nicole = torch.load(f'voices/af_nicole.pt', weights_only=True).to(device)
voicepack_af_sarah = torch.load(f'voices/af_sarah.pt', weights_only=True).to(device)
voicepack_af_sky = torch.load(f'voices/af_sky.pt', weights_only=True).to(device)
voicepack_am_adam = torch.load(f'voices/am_adam.pt', weights_only=True).to(device)
voicepack_am_michael = torch.load(f'voices/am_michael.pt', weights_only=True).to(device)
voicepack_bf_emma = torch.load(f'voices/bf_emma.pt', weights_only=True).to(device)
voicepack_bf_isabella = torch.load(f'voices/bf_isabella.pt', weights_only=True).to(device)
voicepack_bm_george = torch.load(f'voices/bm_george.pt', weights_only=True).to(device)
voicepack_bm_lewis = torch.load(f'voices/bm_lewis.pt', weights_only=True).to(device)
Nach dem Login kopieren

Text mit vordefinierter Sprache generieren

Um die Unterschiede zwischen synthetisierter Sprache zu untersuchen, generieren wir Audio mit verschiedenen Sprachpaketen. Wir verwenden denselben Beispieltext, aber Sie können die Variable voicepack_ ändern, um ein beliebiges Sprachpaket zu verwenden.

#  以下代码段与原文相同,只是重复了多次,为了简洁,这里省略了重复的代码块。
#  每个代码块都使用不同的语音包生成音频,并使用 display(Audio(...)) 播放。
Nach dem Login kopieren

Sprachsynthese: Gemischte Sprache

Erstellen wir zunächst eine durchschnittliche Stimme, indem wir zwei britische Frauenstimmen (bf) kombinieren.

bf_average = (voicepack_bf_emma + voicepack_bf_isabella) / 2
audio, out_ps = generate(MODEL, text, bf_average, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
Nach dem Login kopieren

Als nächstes synthetisieren wir eine Kombination aus zwei weiblichen Stimmen und einer männlichen Stimme.

weight_1 = 0.25
weight_2 = 0.45
weight_3 = 0.3
weighted_voice = (voicepack_bf_emma * weight_1 +
                  voicepack_bf_isabella * weight_2 +
                  voicepack_bm_lewis * weight_3)
audio, out_ps = generate(MODEL, text, weighted_voice, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
Nach dem Login kopieren

Lassen Sie uns abschließend eine Mischung aus amerikanischem und britischem Männergesang synthetisieren.

m_average = (voicepack_am_michael + voicepack_bm_george) / 2
audio, out_ps = generate(MODEL, text, m_average, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
Nach dem Login kopieren

Ich habe Gradio auch verwendet, um die Wirkung gemischter Stimmen zu testen: (Ein Link oder Screenshot der Gradio-Demo sollte hier eingefügt werden)

Die Kombination mit Ollama könnte zu einigen interessanten Experimenten führen.

Diese überarbeitete Ausgabe behält die ursprüngliche Bedeutung und Struktur bei und verbessert gleichzeitig den Fluss und die Klarheit. Die wiederholten Codeblöcke zum Generieren von Audio mit verschiedenen Sprachpaketen wurden zusammengefasst, um Redundanzen zu vermeiden Leerzeichen-Link]“ und „(Link oder Screenshot der Gradio-Demo sollte hier eingefügt werden)“ mit den tatsächlichen Links oder Bildern.

Das obige ist der detaillierte Inhalt vonErkunden Sie die Kokoro TTS-Sprachsynthese auf Google Colab mit T4. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Python 3.6 Laden Sie Giftedatei Fehler ModulenotFoundError: Was soll ich tun, wenn ich die Gurkendatei '__builtin__' lade? Apr 02, 2025 am 06:27 AM

Laden Sie die Gurkendatei in Python 3.6 Umgebungsfehler: ModulenotFoundError: Nomodulenamed ...

Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Was ist der Grund, warum Pipeline -Dateien bei der Verwendung von Scapy Crawler nicht geschrieben werden können? Apr 02, 2025 am 06:45 AM

Diskussion über die Gründe, warum Pipeline -Dateien beim Lernen und Verwendung von Scapy -Crawlern für anhaltende Datenspeicher nicht geschrieben werden können, können Sie auf Pipeline -Dateien begegnen ...

See all articles