Heim Web-Frontend js-Tutorial Laufen Deepseek Janus-Pro-In The Browser: Eine Schritt-für-Schritt-Anleitung

Laufen Deepseek Janus-Pro-In The Browser: Eine Schritt-für-Schritt-Anleitung

Jan 28, 2025 am 10:32 AM

Running DeepSeek Janus-Pro-in the Browser: A Step-by-Step Guide

Ausführen eines großen Sprachmodells (LLM) direkt im Browser bringt neue Möglichkeiten für die Kunden -AI -Anwendung, die die Privatsphäre schützt. In diesem Blog-Beitrag werden wir untersuchen, wie Sie WebGPU und die Transformers.js-Bibliothek von Face in The Browser verwenden, um einen leistungsstarken Text für Bildgenerierungsmodell

Deepseek Janus-pro-1b vollständig auszuführen.

Warum sollten Sie ein browserbasiertes Argument auswählen?

Privatsphäre

: Die Daten lassen das Gerät des Benutzers niemals hinterlassen.
  1. Kostenvorteile : Es ist keine Serverinfrastruktur erforderlich.
  2. Accessability
  3. : Es kann auf jedem Gerät mit einem modernen Browser und WebGPU ausgeführt werden.
  4. Weil Transformers.js
  5. und webgpu beschleunigen Optimierung, Deeds, die dem Design multimodaler Aufgaben wie der Erzeugung von Text-zu-Image-Generation mit Argumentation gewidmet sind.
Schlüsselwerkzeuge und Bibliotheken

Transformers.js : JavaScript -Version der Transformers Library of Sugging Face, optimiert für die Ausführung des Browsers.

webgpu : Moderne API für GPU -Beschleunigungen im Browser ersetzt WebGL durch die verbesserte ML -Workload -Leistung.

Onnx -Laufzeit
    : Die Modellausführung wird durch optimiertes Berechnungsdiagramm implementiert.
  1. Demonstrationscode Übung
  2. Das folgende Beispiel zeigt, wie Deepseek Janus-Pro-1b im Webarbeiter geladen und ausführt, um nicht blockierende Argumentation zu erhalten. Der vollständige Code finden Sie im GitHub -Repository.
  3. Führen Sie die Demonstration aus
  4. Echtzeit-Demonstration hier anzeigen:
Deepseek Janus-pro-1b-Browser-Demonstration

. Die Schlüsselmerkmale der Demonstration

:

import {
  AutoProcessor,
  MultiModalityCausalLM,
  BaseStreamer,
  TextStreamer,
  InterruptableStoppingCriteria,
} from "@huggingface/transformers";

// 定义常量
const IMAGE_GENERATION_COMMAND_PREFIX = "/imagine ";
const MAX_NEW_TEXT_TOKENS = 1024;

/**
 * 用于执行 WebGPU 功能检测的辅助函数
 */
let fp16_supported = false;
async function check() {
  try {
    const adapter = await navigator.gpu.requestAdapter();
    if (!adapter) {
      throw new Error("WebGPU 不受支持(未找到适配器)");
    }
    fp16_supported = adapter.features.has("shader-f16");
    self.postMessage({
      status: "success",
      data: fp16_supported,
    });
  } catch (e) {
    self.postMessage({
      status: "error",
      data: e.toString(),
    });
  }
}

/**
 * 此类使用单例模式来启用管道延迟加载
 */
class ImageGenerationPipeline {
  static model_id = "onnx-community/Janus-Pro-1B-ONNX";

  static async getInstance(progress_callback = null) {
    this.processor ??= AutoProcessor.from_pretrained(this.model_id, {
      progress_callback,
    });

    this.model ??= MultiModalityCausalLM.from_pretrained(this.model_id, {
      dtype: fp16_supported
        ? {
            prepare_inputs_embeds: "q4",
            language_model: "q4f16",
            lm_head: "fp16",
            gen_head: "fp16",
            gen_img_embeds: "fp16",
            image_decode: "fp32",
          }
        : {
            prepare_inputs_embeds: "fp32",
            language_model: "q4",
            lm_head: "fp32",
            lm_head: "fp32",
            gen_head: "fp32",
            gen_img_embeds: "fp32",
            image_decode: "fp32",
          },
      device: {
        prepare_inputs_embeds: "wasm", // TODO 当错误修复后使用“webgpu”
        language_model: "webgpu",
        lm_head: "webgpu",
        gen_head: "webgpu",
        gen_img_embeds: "webgpu",
        image_decode: "webgpu",
      },
      progress_callback,
    });

    return Promise.all([this.processor, this.model]);
  }
}

class ProgressStreamer extends BaseStreamer {
  constructor(total, on_progress) {
    super();
    this.total = total;
    this.on_progress = on_progress;

    this.count = null;
    this.start_time = null;
  }

  put(value) {
    if (this.count === null) {
      // 忽略第一批标记(提示)
      this.count = 0;
      this.start_time = performance.now();
      return;
    }

    const progress = ++this.count / this.total;

    this.on_progress({
      count: this.count,
      total: this.total,
      progress,
      time: performance.now() - this.start_time,
    });
  }

  end() {
    /* 什么也不做 */
  }
}

const stopping_criteria = new InterruptableStoppingCriteria();

async function generate(messages) {
  // 对于此演示,我们只响应最后一条消息
  const message = messages.at(-1);

  // 告诉主线程我们已开始
  self.postMessage({ status: "start" });

  // 加载管道
  const [processor, model] = await ImageGenerationPipeline.getInstance();

  // 确定用户是否要生成图像或文本
  if (message.content.startsWith(IMAGE_GENERATION_COMMAND_PREFIX)) {
    const text = message.content.replace(IMAGE_GENERATION_COMMAND_PREFIX, "");

    const conversation = [
      {
        role: "", // 使用标题大小写
        content: text,
      },
    ];
    const inputs = await processor(conversation, {
      chat_template: "text_to_image",
    });

    const callback_function = (output) => {
      self.postMessage({
        status: "image-update",
        ...output,
      });
    };

    const num_image_tokens = processor.num_image_tokens;
    const streamer = new ProgressStreamer(num_image_tokens, callback_function);

    const outputs = await model.generate_images({
      ...inputs,
      min_new_tokens: num_image_tokens,
      max_new_tokens: num_image_tokens,
      do_sample: true,
      streamer,
    });

    const blob = await outputs[0].toBlob();

    // 将输出发送回主线程
    self.postMessage({
      status: "image-update",
      blob,
    });
  } else {
    const inputs = await processor(
      message.image
        ? [
            {
              role: "",
              content: "<image_placeholder>\n" + message.content,
              images: [message.image],
            },
          ]
        : [
            {
              role: "",
              content:
                "您是一位乐于助人的助手。以简洁的方式回答用户的问题。",
            },
            {
              role: "",
              content: message.content,
            },
          ],
    );

    let startTime;
    let numTokens = 0;
    let tps;
    const token_callback_function = () => {
      startTime ??= performance.now();

      if (numTokens++ > 0) {
        tps = (numTokens / (performance.now() - startTime)) * 1000;
      }
    };
    const callback_function = (output) => {
      self.postMessage({
        status: "text-update",
        output,
        tps,
        numTokens,
      });
    };

    const streamer = new TextStreamer(processor.tokenizer, {
      skip_prompt: true,
      skip_special_tokens: true,
      callback_function,
      token_callback_function,
    });

    // 生成响应
    const outputs = await model.generate({
      ...inputs,
      max_new_tokens: MAX_NEW_TEXT_TOKENS,
      do_sample: false,
      streamer,
      stopping_criteria,
    });
  }

  // 告诉主线程我们已完成
  self.postMessage({
    status: "complete",
  });
}

async function load() {
  self.postMessage({
    status: "loading",
    data: "正在加载模型...",
  });

  // 加载管道并将其保存以备将来使用。
  const [processor, model] = await ImageGenerationPipeline.getInstance((x) => {
    // 我们还向管道添加进度回调,以便我们可以
    // 跟踪模型加载。
    self.postMessage(x);
  });

  self.postMessage({ status: "ready" });
}

// 侦听来自主线程的消息
self.addEventListener("message", async (e) => {
  const { type, data } = e.data;

  switch (type) {
    case "check":
      check();
      break;

    case "load":
      load();
      break;

    case "generate":
      stopping_criteria.reset();
      generate(data);
      break;

    case "interrupt":
      stopping_criteria.interrupt();
      break;

    case "reset":
      stopping_criteria.reset();
      break;
  }
});
Nach dem Login kopieren
Der reale Time -Fortschritt des Modellladens und Arguments wird aktualisiert.

WebGPU wird beschleunigt (erforderlich Chrom 113 oder Edge 113).

vollständige Clientausführung -Die Daten werden nicht an den externen Server gesendet.

Herausforderung und Optimierung

Modellquantifizierung

: Modellquantifizierung auf 8 Ziffern, um die Größe zu verringern und die Ladegeschwindigkeit zu erhöhen.
  • Speicherverwaltung
  • :: Web Worker kann verhindern, dass die Benutzeroberfläche während der Argumentation einfriert.
  • Browserkompatibilität
  • :: webgpu befindet sich noch in der Testphase, ist jedoch für die Leistung unerlässlich.

Schlussfolgerung

Die Ausführung von Deepseek Janus-Pro-1b im Browser zeigt das Potenzial der Kunden-KI. Mit Tools wie Transformers.js und WebGPUs können komplexe Modelle nun effizient in der begrenzten Umgebung ausgeführt werden und gleichzeitig die Privatsphäre des Benutzers schützen.
  1. Follow -up -Schritte : folgen
    • Versuchen Sie verschiedene Eingabeaufforderungen und Modellkonfigurationen.
    • Erforschung des feinen Tuning -Modells für Mission für bestimmte Felder.
    • Überwachen Sie die Einführung von WebGPU, um eine breitere Kompatibilität zu gewährleisten.

    Für Entwickler markiert dies die aufregende Transformation der Abstiegs- und benutzerzentrischen AI -Anwendungen. In der TEPTH -Forschung zum Beispielcode und mit der Konstruktion beginnen! ?

    Diese Revision Output hält die ursprüngliche Bedeutung bei der Verwendung von DiFffereng und Satzstrukturen

Das obige ist der detaillierte Inhalt vonLaufen Deepseek Janus-Pro-In The Browser: Eine Schritt-für-Schritt-Anleitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1665
14
PHP-Tutorial
1269
29
C#-Tutorial
1249
24
JavaScript -Engines: Implementierungen vergleichen JavaScript -Engines: Implementierungen vergleichen Apr 13, 2025 am 12:05 AM

Unterschiedliche JavaScript -Motoren haben unterschiedliche Auswirkungen beim Analysieren und Ausführen von JavaScript -Code, da sich die Implementierungsprinzipien und Optimierungsstrategien jeder Engine unterscheiden. 1. Lexikalanalyse: Quellcode in die lexikalische Einheit umwandeln. 2. Grammatikanalyse: Erzeugen Sie einen abstrakten Syntaxbaum. 3. Optimierung und Kompilierung: Generieren Sie den Maschinencode über den JIT -Compiler. 4. Führen Sie aus: Führen Sie den Maschinencode aus. V8 Engine optimiert durch sofortige Kompilierung und versteckte Klasse.

Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Von C/C nach JavaScript: Wie alles funktioniert Von C/C nach JavaScript: Wie alles funktioniert Apr 14, 2025 am 12:05 AM

Die Verschiebung von C/C zu JavaScript erfordert die Anpassung an dynamische Typisierung, Müllsammlung und asynchrone Programmierung. 1) C/C ist eine statisch typisierte Sprache, die eine manuelle Speicherverwaltung erfordert, während JavaScript dynamisch eingegeben und die Müllsammlung automatisch verarbeitet wird. 2) C/C muss in den Maschinencode kompiliert werden, während JavaScript eine interpretierte Sprache ist. 3) JavaScript führt Konzepte wie Verschlüsse, Prototypketten und Versprechen ein, die die Flexibilität und asynchrone Programmierfunktionen verbessern.

JavaScript und das Web: Kernfunktionalität und Anwendungsfälle JavaScript und das Web: Kernfunktionalität und Anwendungsfälle Apr 18, 2025 am 12:19 AM

Zu den Hauptanwendungen von JavaScript in der Webentwicklung gehören die Interaktion der Clients, die Formüberprüfung und die asynchrone Kommunikation. 1) Dynamisches Inhaltsaktualisierung und Benutzerinteraktion durch DOM -Operationen; 2) Die Kundenüberprüfung erfolgt vor dem Einreichung von Daten, um die Benutzererfahrung zu verbessern. 3) Die Aktualisierung der Kommunikation mit dem Server wird durch AJAX -Technologie erreicht.

JavaScript in Aktion: Beispiele und Projekte in realer Welt JavaScript in Aktion: Beispiele und Projekte in realer Welt Apr 19, 2025 am 12:13 AM

Die Anwendung von JavaScript in der realen Welt umfasst Front-End- und Back-End-Entwicklung. 1) Zeigen Sie Front-End-Anwendungen an, indem Sie eine TODO-Listanwendung erstellen, die DOM-Operationen und Ereignisverarbeitung umfasst. 2) Erstellen Sie RESTFUFFUPI über Node.js und express, um Back-End-Anwendungen zu demonstrieren.

Verständnis der JavaScript -Engine: Implementierungsdetails Verständnis der JavaScript -Engine: Implementierungsdetails Apr 17, 2025 am 12:05 AM

Es ist für Entwickler wichtig, zu verstehen, wie die JavaScript -Engine intern funktioniert, da sie effizientere Code schreibt und Leistungs Engpässe und Optimierungsstrategien verstehen kann. 1) Der Workflow der Engine umfasst drei Phasen: Parsen, Kompilieren und Ausführung; 2) Während des Ausführungsprozesses führt die Engine dynamische Optimierung durch, wie z. B. Inline -Cache und versteckte Klassen. 3) Zu Best Practices gehören die Vermeidung globaler Variablen, die Optimierung von Schleifen, die Verwendung von const und lass und die Vermeidung übermäßiger Verwendung von Schließungen.

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python vs. JavaScript: Entwicklungsumgebungen und Tools Python vs. JavaScript: Entwicklungsumgebungen und Tools Apr 26, 2025 am 12:09 AM

Sowohl Python als auch JavaScripts Entscheidungen in Entwicklungsumgebungen sind wichtig. 1) Die Entwicklungsumgebung von Python umfasst Pycharm, Jupyternotebook und Anaconda, die für Datenwissenschaft und schnelles Prototyping geeignet sind. 2) Die Entwicklungsumgebung von JavaScript umfasst Node.JS, VSCODE und WebPack, die für die Entwicklung von Front-End- und Back-End-Entwicklung geeignet sind. Durch die Auswahl der richtigen Tools nach den Projektbedürfnissen kann die Entwicklung der Entwicklung und die Erfolgsquote der Projekte verbessert werden.

See all articles