Dieses Tutorial führt Sie durch den Bau eines RAG -Systems (Abruf Augmented Generation) mit Python und OpenAI. RAG verbessert die KI -Antworten, indem relevante Informationen aus Ihren Dokumenten abgerufen werden, bevor eine Antwort generiert wird.
Was werden Sie lernen:
Projektstruktur:
<code>rag-project/ │ ├── src/ │ ├── __init__.py │ ├── document_loader.py │ ├── text_processor.py │ ├── embeddings_manager.py │ ├── retrieval_system.py │ └── rag_system.py │ ├── data/ │ └── documents/ │ ├── requirements.txt ├── test.py ├── README.md └── .env</code>
Schritt 1: Umgebungsaufbau:
python -m venv venv
) venvScriptsactivate
source venv/bin/activate
pip install openai python-dotenv numpy pandas
requirements.txt
<code>openai==1.12.0 python-dotenv==1.0.0 numpy==1.24.3 pandas==2.1.0</code>
.env
<code>OPENAI_API_KEY=your_api_key_here</code>
Schritt 2: Dokumentlade (): src/document_loader.py
<code class="language-python">import os from typing import List class DocumentLoader: def __init__(self, documents_path: str): self.documents_path = documents_path def load_documents(self) -> List[str]: documents = [] for filename in os.listdir(self.documents_path): if filename.endswith('.txt'): with open(os.path.join(self.documents_path, filename), 'r') as file: documents.append(file.read()) return documents</code>
Schritt 3: Textverarbeitung (): src/text_processor.py
<code class="language-python">from typing import List class TextProcessor: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def split_into_chunks(self, text: str) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: if current_size + len(word) > self.chunk_size: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_size = len(word) else: current_chunk.append(word) current_size += len(word) + 1 if current_chunk: chunks.append(' '.join(current_chunk)) return chunks</code>
Schritt 4: Einbettungserstellung (): src/embeddings_manager.py
<code class="language-python">from typing import List import openai import numpy as np class EmbeddingsManager: def __init__(self, api_key: str): openai.api_key = api_key def create_embeddings(self, texts: List[str]) -> List[np.ndarray]: embeddings = [] for text in texts: response = openai.embeddings.create( model="text-embedding-ada-002", input=text ) embeddings.append(np.array(response.data[0].embedding)) return embeddings</code>
Schritt 5: Abrufsystem (): src/retrieval_system.py
<code class="language-python">import numpy as np from typing import List, Tuple class RetrievalSystem: def __init__(self, chunks: List[str], embeddings: List[np.ndarray]): self.chunks = chunks self.embeddings = embeddings def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]: similarities = [] for i, embedding in enumerate(self.embeddings): similarity = np.dot(query_embedding, embedding) / ( np.linalg.norm(query_embedding) * np.linalg.norm(embedding) ) similarities.append((self.chunks[i], similarity)) return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]</code>
Schritt 6: OpenAI -Integration (): src/rag_system.py
<code class="language-python">import os from dotenv import load_dotenv from typing import List import openai from .document_loader import DocumentLoader from .text_processor import TextProcessor from .embeddings_manager import EmbeddingsManager from .retrieval_system import RetrievalSystem class RAGSystem: def __init__(self): load_dotenv() self.api_key = os.getenv('OPENAI_API_KEY') self.loader = DocumentLoader('data/documents') self.processor = TextProcessor() self.embeddings_manager = EmbeddingsManager(self.api_key) # Initialize system self.initialize_system() def initialize_system(self): # Load and process documents documents = self.loader.load_documents() self.chunks = [] for doc in documents: self.chunks.extend(self.processor.split_into_chunks(doc)) # Create embeddings self.embeddings = self.embeddings_manager.create_embeddings(self.chunks) # Initialize retrieval system self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings) def answer_question(self, question: str) -> str: # Get question embedding question_embedding = self.embeddings_manager.create_embeddings([question])[0] # Get relevant chunks relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding) # Prepare context context = "\n".join([chunk[0] for chunk in relevant_chunks]) # Create prompt prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:""" # Get response from OpenAI response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=[ {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content</code>
Schritt 7: Systemverwendung (): test.py
Dokumente in .txt
platzieren. Dann führen Sie data/documents
: test.py
aus
<code class="language-python"># test.py from src.rag_system import RAGSystem # Initialize the RAG system rag = RAGSystem() # Ask a question question = "What was the answer to the guardian’s riddle, and how did it help Kai?" #Replace with your question based on your documents answer = rag.answer_question(question) print(answer)</code>
Schlussfolgerung:
Dies liefert ein grundlegendes Lappensystem. Zukünftige Verbesserungen könnten erweitertes Chunking, Einbettung von Caching, Fehlerbehebung, raffiniertem Eingabeaufenthalt und Integration der Vektordatenbank sein. Denken Sie daran, Ihren OpenAI -API -Schlüssel sicher zu verwalten und die Nutzung zu überwachen.Das obige ist der detaillierte Inhalt vonBauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!