Heim Backend-Entwicklung Python-Tutorial Bauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf

Bauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf

Jan 29, 2025 am 04:11 AM

Building Your First RAG System with Python and OpenAI

Dieses Tutorial führt Sie durch den Bau eines RAG -Systems (Abruf Augmented Generation) mit Python und OpenAI. RAG verbessert die KI -Antworten, indem relevante Informationen aus Ihren Dokumenten abgerufen werden, bevor eine Antwort generiert wird.

Was werden Sie lernen:

    Erstellen eines Lappensystems von Grund auf neu.
  • Vorbereitung und Verarbeitung von Dokumenten für Rag.
  • unter Verwendung von OpenAI -Einbettungen.
  • Erstellen eines grundlegenden Abrufsystems.
  • in die OpenAI -API integrieren.

Projektstruktur:

<code>rag-project/
│
├── src/
│   ├── __init__.py
│   ├── document_loader.py
│   ├── text_processor.py
│   ├── embeddings_manager.py
│   ├── retrieval_system.py
│   └── rag_system.py
│
├── data/
│   └── documents/
│
├── requirements.txt
├── test.py
├── README.md
└── .env</code>
Nach dem Login kopieren

Schritt 1: Umgebungsaufbau:

    Erstellen Sie eine virtuelle Umgebung:
  1. (unter Windows: python -m venv venv) venvScriptsactivate
  2. Aktivieren Sie es:
  3. source venv/bin/activate
  4. Pakete installieren:
  5. pip install openai python-dotenv numpy pandas
  6. erstellen
  7. : requirements.txt
<code>openai==1.12.0
python-dotenv==1.0.0
numpy==1.24.3
pandas==2.1.0</code>
Nach dem Login kopieren
    konfigurieren
  1. : .env
<code>OPENAI_API_KEY=your_api_key_here</code>
Nach dem Login kopieren

Schritt 2: Dokumentlade (): src/document_loader.py

import os
from typing import List

class DocumentLoader:
    def __init__(self, documents_path: str):
        self.documents_path = documents_path

    def load_documents(self) -> List[str]:
        documents = []
        for filename in os.listdir(self.documents_path):
            if filename.endswith('.txt'):
                with open(os.path.join(self.documents_path, filename), 'r') as file:
                    documents.append(file.read())
        return documents
Nach dem Login kopieren

Schritt 3: Textverarbeitung (): src/text_processor.py

from typing import List

class TextProcessor:
    def __init__(self, chunk_size: int = 1000):
        self.chunk_size = chunk_size

    def split_into_chunks(self, text: str) -> List[str]:
        words = text.split()
        chunks = []
        current_chunk = []
        current_size = 0

        for word in words:
            if current_size + len(word) > self.chunk_size:
                chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_size = len(word)
            else:
                current_chunk.append(word)
                current_size += len(word) + 1

        if current_chunk:
            chunks.append(' '.join(current_chunk))

        return chunks
Nach dem Login kopieren

Schritt 4: Einbettungserstellung (): src/embeddings_manager.py

from typing import List
import openai
import numpy as np

class EmbeddingsManager:
    def __init__(self, api_key: str):
        openai.api_key = api_key

    def create_embeddings(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = []
        for text in texts:
            response = openai.embeddings.create(
                model="text-embedding-ada-002",
                input=text
            )
            embeddings.append(np.array(response.data[0].embedding))
        return embeddings
Nach dem Login kopieren

Schritt 5: Abrufsystem (): src/retrieval_system.py

import numpy as np
from typing import List, Tuple

class RetrievalSystem:
    def __init__(self, chunks: List[str], embeddings: List[np.ndarray]):
        self.chunks = chunks
        self.embeddings = embeddings

    def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]:
        similarities = []
        for i, embedding in enumerate(self.embeddings):
            similarity = np.dot(query_embedding, embedding) / (
                np.linalg.norm(query_embedding) * np.linalg.norm(embedding)
            )
            similarities.append((self.chunks[i], similarity))

        return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
Nach dem Login kopieren

Schritt 6: OpenAI -Integration (): src/rag_system.py

import os
from dotenv import load_dotenv
from typing import List
import openai

from .document_loader import DocumentLoader
from .text_processor import TextProcessor
from .embeddings_manager import EmbeddingsManager
from .retrieval_system import RetrievalSystem

class RAGSystem:
    def __init__(self):
        load_dotenv()
        self.api_key = os.getenv('OPENAI_API_KEY')
        self.loader = DocumentLoader('data/documents')
        self.processor = TextProcessor()
        self.embeddings_manager = EmbeddingsManager(self.api_key)

        # Initialize system
        self.initialize_system()

    def initialize_system(self):
        # Load and process documents
        documents = self.loader.load_documents()
        self.chunks = []
        for doc in documents:
            self.chunks.extend(self.processor.split_into_chunks(doc))

        # Create embeddings
        self.embeddings = self.embeddings_manager.create_embeddings(self.chunks)

        # Initialize retrieval system
        self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings)

    def answer_question(self, question: str) -> str:
        # Get question embedding
        question_embedding = self.embeddings_manager.create_embeddings([question])[0]

        # Get relevant chunks
        relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding)

        # Prepare context
        context = "\n".join([chunk[0] for chunk in relevant_chunks])

        # Create prompt
        prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:"""

        # Get response from OpenAI
        response = openai.chat.completions.create(
            model="gpt-4-turbo-preview",
            messages=[
                {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content
Nach dem Login kopieren

Schritt 7: Systemverwendung (): test.py

Probe

Dokumente in .txt platzieren. Dann führen Sie data/documents: test.py aus

# test.py
from src.rag_system import RAGSystem

# Initialize the RAG system
rag = RAGSystem()

# Ask a question
question = "What was the answer to the guardian’s riddle, and how did it help Kai?" #Replace with your question based on your documents
answer = rag.answer_question(question)
print(answer)
Nach dem Login kopieren

Schlussfolgerung:

Dies liefert ein grundlegendes Lappensystem. Zukünftige Verbesserungen könnten erweitertes Chunking, Einbettung von Caching, Fehlerbehebung, raffiniertem Eingabeaufenthalt und Integration der Vektordatenbank sein. Denken Sie daran, Ihren OpenAI -API -Schlüssel sicher zu verwalten und die Nutzung zu überwachen.

Das obige ist der detaillierte Inhalt vonBauen Sie Ihr erstes Lappensystem mit Python und OpenAI auf. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Was sind reguläre Ausdrücke? Was sind reguläre Ausdrücke? Mar 20, 2025 pm 06:25 PM

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Apr 01, 2025 pm 11:18 PM

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

See all articles