Inhaltsverzeichnis
Pandas vs. PySpark: Ein Leitfaden für Java -Entwickler zur Datenverarbeitung
, gefolgt von
Heim Backend-Entwicklung Python-Tutorial Pandas vs. PySpark: Ein Leitfaden eines Java -Entwicklers zur Datenverarbeitung

Pandas vs. PySpark: Ein Leitfaden eines Java -Entwicklers zur Datenverarbeitung

Mar 07, 2025 pm 06:34 PM

Pandas vs. PySpark: Ein Leitfaden für Java -Entwickler zur Datenverarbeitung

Dieser Artikel zielt darauf ab, Java -Entwickler beim Verständnis und Auswahl zwischen Pandas und PYSPark für Datenverarbeitungsaufgaben zu steuern. Wir werden ihre Unterschiede, Lernkurven und Leistungsauswirkungen untersuchen. Pandas, eine Python -Bibliothek, arbeitet mit Daten im Speicher. Es verwendet DataFrames, die den Tabellen in SQL -Datenbanken ähnlich sind und leistungsstarke Funktionen für die Datenreinigung, Transformation und Analyse bieten. Die Syntax ist prägnant und intuitiv und ähnelt häufig SQL oder R. Operationen werden im gesamten Datenrahmen im Speicher ausgeführt, wodurch es für kleinere Datensätze effizient ist. Es werden auch Datenrahmen verwendet, diese werden jedoch auf eine Gruppe von Maschinen verteilt. Auf diese Weise können PYSPARK Datensätze verarbeiten, die weitaus größer sind als Pandas. Während die DataFrame -API von PYSPARK einige Ähnlichkeiten mit Pandas aufweist, beinhaltet seine Syntax häufig eine explizitere Spezifikation verteilter Vorgänge, einschließlich Datenverzögerung und Mischung. Dies ist erforderlich, um die Verarbeitung über mehrere Maschinen hinweg zu koordinieren. Beispielsweise übersetzt sich eine einfache Pandas

-Operation in eine komplexere Reihe von Spark -Transformationen wie

, gefolgt von

im pyspark. Darüber hinaus bietet PYSPark Funktionen, die auf die verteilte Verarbeitung zugeschnitten sind, wie z. B. Verfassungsverträglichkeit und Skalierung über einen Cluster. Das Verständnis von OP-Prinzipien für objektorientierte Programmierungen (OOP) ist für beide entscheidend. Die starke Betonung von Java auf Datenstrukturen führt gut zum Verständnis von Pandas -Datenrahmen und dem DataFrame -Schema von PYSPARK. Erfahrung mit Datenmanipulation in Java (z. B. Verwendung von Sammlungen oder Streams) bezieht sich direkt auf die Transformationen, die in Pandas und PySpark angewendet werden. Die Python -Syntax ist einfacher zu verstehen als einige andere Sprachen, und die Kernkonzepte der Datenmanipulation sind weitgehend konsistent. Die Konzentration auf das Mastering von Numpy (eine grundlegende Bibliothek für Pandas) wird besonders vorteilhaft sein.

Für pySpark ist die anfängliche Lernkurve aufgrund des verteilten Rechenaspekts steiler. Die Erfahrungen von Java -Entwicklern mit Multithreading und Parallelität werden sich jedoch als vorteilhaft erweisen, um zu verstehen, wie PYSPARK Aufgaben in einem Cluster verwaltet. Sich mit Sparks Konzepten wie RDDs (widerstandsfähige verteilte Datensätze) und Transformationen/Aktionen vertraut zu machen, ist der Schlüssel. Das Verständnis der Einschränkungen und Vorteile der verteilten Berechnung ist wesentlich. Pandas zeichnet sich mit kleineren Datensätzen aus, die bequem in den verfügbaren Speicher einer einzelnen Maschine passen. Seine Memory-Operationen sind im Allgemeinen schneller als der Overhead der verteilten Verarbeitung in PYSPark für solche Szenarien. Für Datenmanipulationsaufgaben, die komplexe Berechnungen oder iterative Verarbeitung für relativ kleine Datensätze beinhalten, bietet Pandas eine einfachere und häufig schnellere Lösung. Die verteilte Natur ermöglicht es ihm, Terabyte oder sogar Petabyte von Daten zu handhaben. Während der Overhead der Verteilung von Daten und Koordinierungsaufgaben eine Latenz einführt, wird dies durch die Fähigkeit, Datensätze zu verarbeiten, die nicht mit Pandas verarbeitet werden können. Für groß angelegte Datenverarbeitungsaufgaben wie ETL (Extrakt, Transformation, Last), maschinelles Lernen für Big Data und Echtzeitanalysen zum Streaming-Daten ist PYSPARK der klare Gewinner in Bezug auf Skalierbarkeit und Leistung. Für kleinere Datensätze kann der Overhead von PYSPARK jedoch alle Leistungsgewinne im Vergleich zu Pandas zunichte machen. Daher ist eine sorgfältige Berücksichtigung der Datengröße und der Aufgabenkomplexität von entscheidender Bedeutung bei der Auswahl zwischen den beiden.

Das obige ist der detaillierte Inhalt vonPandas vs. PySpark: Ein Leitfaden eines Java -Entwicklers zur Datenverarbeitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Wie löste ich Berechtigungsprobleme bei der Verwendung von Python -Verssionsbefehl im Linux Terminal? Apr 02, 2025 am 06:36 AM

Verwenden Sie Python im Linux -Terminal ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Wie bekomme ich Nachrichtendaten, die den Anti-Crawler-Mechanismus von Investing.com umgehen? Apr 02, 2025 am 07:03 AM

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...

See all articles