Ausbeute
anstelle von return
innerhalb einer Funktion. Eine Generatorfunktion gibt keinen Wert direkt zurück. Stattdessen gibt es ein Generatorobjekt zurück. Dieses Objekt kann dann iteriert werden und erzeugt jeden Wert nach Bedarf. Angenommen, Sie möchten eine Folge von Zahlen von 1 bis 10.000.000 erzeugen. Ein listenbasierter Ansatz würde einen signifikanten Speicher verbrauchen: my_list = list (Bereich (10000000)) # verbraucht viel Speicher
Wie benutze ich Python -Generatoren zur Speichereffizienz?
So verwenden Sie Python -Generatoren zur Speichereffizienz? Sie erreichen dies, indem sie Werte jeweils auf Bedarf produzieren, anstatt den gesamten Datensatz gleichzeitig im Speicher zu erstellen. Dies erfolgt mit dem Schlüsselwort Ausbeute
anstelle von return
innerhalb einer Funktion. Eine Generatorfunktion gibt keinen Wert direkt zurück. Stattdessen gibt es ein Generatorobjekt zurück. Dieses Objekt kann dann iteriert werden und erzeugt jeden Wert nach Bedarf. Angenommen, Sie möchten eine Folge von Zahlen von 1 bis 10.000.000 erzeugen. Ein listenbasierter Ansatz würde einen signifikanten Speicher verbrauchen: <code class="python"> my_list = list (Bereich (10000000)) # verbraucht viel Speicher </code>
Nach dem Login kopieren
<code class="python"> my_list = list (Bereich (10000000)) # verbraucht viel Speicher </code>
Ein generatorbasiertes Ansatz ist jedoch weitaus mehr Speicher-Effizienz:
<code class. my_generator erstellt ein generatorobjekt kein speicher f num in my_gen: verarbeiten jede zahl einzeln. nur eine nummer ist nach dem anderen speicher. print druckt die nummern nacheinander. sie k dies durch ihre verarbeitungslogik ersetzen.> </code>
Die Schlüsselunterschiede liegt in der Erstellung der Werte. Der List -Ansatz erstellt sofort alle 10 Millionen Zahlen. Der Generatoransatz erstellt jede Nummer nur, wenn sie während der Iteration angefordert wird. Diese faule Bewertung ist der Kern der Gedächtniseffizienz eines Generators. Sie können auch Generatorausdrücke für die Erstellung von Generatorgenerator verwenden:
<code class="python"> my_gen_expression = (i für i in Bereich (10000000) #SIMILILE TO -OBEN, aber besserer in My_Gen_gen_expression: drucken (num) </code>
Was sind die Schlüsselanheldungen bei PYHON -LIGN. Datensätze? Listen speichern alle ihre Elemente im Speicher gleichzeitig, was zu einem hohen Speicherverbrauch für große Datensätze führt, die möglicherweise den verfügbaren RAM überschreiten. Generatoren dagegen erzeugen Werte auf Bedarf und halten die Speicherverwendung minimal. Dies verhindert meenRor Ausnahmen und ermöglicht die Verarbeitung von Datensätzen, die weit größer als verfügbarer RAM sind. Die Zeit, die unnötige Elemente erstellt hat, wird gespeichert. Beispielsweise kann ein Generator Primzahlen auf unbestimmte Zeit erzeugen. Dies reduziert den Speicher Fußabdruck und kann die Verarbeitung erheblich beschleunigen, insbesondere für I/O-gebundene Aufgaben. f: lines = f.readlines() # Reads entire file into memory processed_lines = [line.strip().upper() for line in lines] # Processes the entire list in memoryEfficient (using generators):
<code class="python">def process_file(filename): with open(filename, & quot; Dies ist für Dateien von entscheidender Bedeutung, die viel größer als verfügbarer RAM. In ähnlicher Weise können Sie dieses Prinzip auf andere Speicherintensive wie Datenbankabfragen oder Netzwerkanforderungen anwenden, bei denen Sie die Ergebnisse iterativ verarbeiten, anstatt alles gleichzeitig zu laden. Datensätze: Wenn die Datengröße den verfügbaren RAM überschreitet, sind Generatoren von wesentlicher Bedeutung, um <code> memoryError </code> Ausnahmen zu vermeiden. Berechnungen: Bei der Durchführung von Berechnungen in einer Sequenz, in der das Ergebnis eines Schritts von der vorherigen abhängt, können Generatoren verwendet werden, um die Speicherung von Zwischenergebnissen im Gedächtnis zu vermeiden. Sequenzen: Generatoren sind die einzige praktische Möglichkeit, unendliche Sequenzen in Python darzustellen und mit ihnen zu arbeiten. Sie bieten eine leistungsstarke und effiziente Möglichkeit, um große Datensätze und Streaming -Daten zu verarbeiten und die Leistung und Skalierbarkeit Ihrer Anwendungen erheblich zu verbessern. </code>
Nach dem Login kopieren
Efficient (using generators):
<code class="python">def process_file(filename): with open(filename, & quot; Dies ist für Dateien von entscheidender Bedeutung, die viel größer als verfügbarer RAM. In ähnlicher Weise können Sie dieses Prinzip auf andere Speicherintensive wie Datenbankabfragen oder Netzwerkanforderungen anwenden, bei denen Sie die Ergebnisse iterativ verarbeiten, anstatt alles gleichzeitig zu laden. Datensätze: Wenn die Datengröße den verfügbaren RAM überschreitet, sind Generatoren von wesentlicher Bedeutung, um <code> memoryError </code> Ausnahmen zu vermeiden. Berechnungen: Bei der Durchführung von Berechnungen in einer Sequenz, in der das Ergebnis eines Schritts von der vorherigen abhängt, können Generatoren verwendet werden, um die Speicherung von Zwischenergebnissen im Gedächtnis zu vermeiden. Sequenzen: Generatoren sind die einzige praktische Möglichkeit, unendliche Sequenzen in Python darzustellen und mit ihnen zu arbeiten. Sie bieten eine leistungsstarke und effiziente Möglichkeit, um große Datensätze und Streaming -Daten zu verarbeiten und die Leistung und Skalierbarkeit Ihrer Anwendungen erheblich zu verbessern. </code>
Das obige ist der detaillierte Inhalt vonWie benutze ich Python -Generatoren zur Speichereffizienz?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Fastapi ...

Verwenden Sie Python im Linux -Terminal ...

Verständnis der Anti-Crawling-Strategie von Investing.com Viele Menschen versuchen oft, Nachrichten von Investing.com (https://cn.investing.com/news/latest-news) zu kriechen ...
