javascript图像处理—仿射变换深度理解_javascript技巧
上一篇文章,我们讲解了图像金字塔,这篇文章我们来了解仿射变换。
仿射?
任何仿射变换都可以转换成,乘以一个矩阵(线性变化),再加上一个向量(平移变化)。
实际上仿射是两幅图片的变换关系。
例如我们可以通过仿射变换对图片进行:缩放、旋转、平移等操作。
一个数学问题
在解决仿射问题前,我们来做一个数学题。
如图,对于点(x1, y1),相对于原点旋转一个角度a,那么这个点到哪里了呢?
我们将坐标系变成极坐标系,则点(x1, y1)就变成了(r, β),而旋转后变成(r, α+ β)。
转回直角坐标系,则旋转后的点变成了(cos(α+ β) * r, sin(α+ β) * r)。
然后利用公式:
cos(α+β)=cosαcosβ-sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
以及原来点为(cosβ * r, sinβ * r),于是很容易得出新的点为(x1 * cosα - y1 * sinα, x1 * sinaα + y1 * cosα)。
我们可以从中推导出旋转变换公式:
那么平移就相对简单很多了,就相当于加上一个向量(c, d)就行了。
获得变换矩阵函数实现
通常我们使用矩阵来表示仿射变换。
其中A是旋转缩放变换,B是平移变换。则结果T满足:
或者
![T = M \cdot [x, y, 1]^{T}](http://files.jb51.net/file_images/article/201301/201301160852597.png)
即:
var getRotationArray2D = function(__angle, __x, __y){
var sin = Math.sin(__angle) || 0,
cos = Math.cos(__angle) || 1,
x = __x || 0,
y = __y || 0;
return [cos, -sin, -x,
sin, cos, -y
];
};
这样我们就得到了一个仿射变换矩阵。
当然这个实现本身是有一定问题的,因为这个原点被固定在左上角了。
仿射变换实现
var warpAffine = function(__src, __rotArray, __dst){
(__src && __rotArray) || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
if(__src.type && __src.type === "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
sData = new Uint32Array(__src.buffer),
dData = new Uint32Array(dst.buffer);
var i, j, xs, ys, x, y, nowPix;
for(j = 0, nowPix = 0; j xs = __rotArray[1] * j + __rotArray[2];
ys = __rotArray[4] * j + __rotArray[5];
for(i = 0; i
if(xs > 0 && ys > 0 && xs
y = ys | 0;
x = xs | 0;
dData[nowPix] = sData[y * width + x];
}else{
dData[nowPix] = 4278190080; //Black
}
}
}
}else{
error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */);
}
return dst;
};
这个函数先把矩阵数据变成32位形式,操作每个元素就等同于操作每一个像素。
然后遍历所有元素,对对应的点进行赋值。
效果

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Wasserstein-Distanz, auch EarthMover-Distanz (EMD) genannt, ist eine Metrik zur Messung der Differenz zwischen zwei Wahrscheinlichkeitsverteilungen. Im Vergleich zur herkömmlichen KL-Divergenz oder JS-Divergenz berücksichtigt die Wasserstein-Distanz die Strukturinformationen zwischen Verteilungen und weist daher bei vielen Bildverarbeitungsaufgaben eine bessere Leistung auf. Durch die Berechnung der minimalen Transportkosten zwischen zwei Verteilungen ist die Wasserstein-Distanz in der Lage, den minimalen Arbeitsaufwand zu messen, der erforderlich ist, um eine Verteilung in eine andere umzuwandeln. Diese Metrik ist in der Lage, die geometrischen Unterschiede zwischen Verteilungen zu erfassen und spielt daher eine wichtige Rolle bei Aufgaben wie der Bilderzeugung und der Stilübertragung. Daher wird die Wasserstein-Distanz zum Konzept

VisionTransformer (VIT) ist ein von Google vorgeschlagenes Transformer-basiertes Bildklassifizierungsmodell. Im Gegensatz zu herkömmlichen CNN-Modellen stellt VIT Bilder als Sequenzen dar und lernt die Bildstruktur durch Vorhersage der Klassenbezeichnung des Bildes. Um dies zu erreichen, unterteilt VIT das Eingabebild in mehrere Patches, verkettet die Pixel in jedem Patch über Kanäle und führt dann eine lineare Projektion durch, um die gewünschten Eingabeabmessungen zu erreichen. Schließlich wird jeder Patch zu einem einzelnen Vektor zusammengefasst, der die Eingabesequenz bildet. Durch den Selbstaufmerksamkeitsmechanismus von Transformer ist VIT in der Lage, die Beziehung zwischen verschiedenen Patches zu erfassen und eine effektive Merkmalsextraktion und Klassifizierungsvorhersage durchzuführen. Diese serialisierte Bilddarstellung ist

Bei der Restaurierung alter Fotos handelt es sich um eine Methode zur Nutzung künstlicher Intelligenz, um alte Fotos zu reparieren, aufzuwerten und zu verbessern. Mithilfe von Computer-Vision- und maschinellen Lernalgorithmen kann die Technologie Schäden und Unvollkommenheiten in alten Fotos automatisch erkennen und reparieren, sodass diese klarer, natürlicher und realistischer aussehen. Die technischen Prinzipien der Restaurierung alter Fotos umfassen hauptsächlich die folgenden Aspekte: 1. Bildrauschen und -verbesserung Bei der Wiederherstellung alter Fotos müssen diese zunächst entrauscht und verbessert werden. Bildverarbeitungsalgorithmen und -filter wie Mittelwertfilterung, Gaußsche Filterung, bilaterale Filterung usw. können zur Lösung von Rausch- und Farbfleckproblemen eingesetzt werden, wodurch die Qualität von Fotos verbessert wird. 2. Bildwiederherstellung und -reparatur Bei alten Fotos können einige Mängel und Schäden wie Kratzer, Risse, Ausbleichen usw. auftreten. Diese Probleme können durch Bildwiederherstellungs- und Reparaturalgorithmen gelöst werden

Java-Entwicklung: Ein praktischer Leitfaden zur Bilderkennung und -verarbeitung Zusammenfassung: Mit der rasanten Entwicklung von Computer Vision und künstlicher Intelligenz spielen Bilderkennung und -verarbeitung in verschiedenen Bereichen eine wichtige Rolle. In diesem Artikel wird erläutert, wie die Java-Sprache zum Implementieren der Bilderkennung und -verarbeitung verwendet wird, und es werden spezifische Codebeispiele bereitgestellt. 1. Grundprinzipien der Bilderkennung Unter Bilderkennung versteht man den Einsatz von Computertechnologie zur Analyse und zum Verständnis von Bildern, um Objekte, Merkmale oder Inhalte im Bild zu identifizieren. Bevor wir die Bilderkennung durchführen, müssen wir einige grundlegende Bildverarbeitungstechniken verstehen, wie in der Abbildung dargestellt

Bei der superauflösenden Bildrekonstruktion werden hochauflösende Bilder aus Bildern mit niedriger Auflösung mithilfe von Deep-Learning-Techniken wie Convolutional Neural Networks (CNN) und Generative Adversarial Networks (GAN) generiert. Das Ziel dieser Methode besteht darin, die Qualität und Detailgenauigkeit von Bildern zu verbessern, indem Bilder mit niedriger Auflösung in Bilder mit hoher Auflösung umgewandelt werden. Diese Technologie findet breite Anwendung in vielen Bereichen, beispielsweise in der medizinischen Bildgebung, Überwachungskameras, Satellitenbildern usw. Durch die hochauflösende Bildrekonstruktion können wir klarere und detailliertere Bilder erhalten, die dabei helfen, Ziele und Merkmale in Bildern genauer zu analysieren und zu identifizieren. Rekonstruktionsmethoden Hochauflösende Bildrekonstruktionsmethoden können im Allgemeinen in zwei Kategorien unterteilt werden: interpolationsbasierte Methoden und Deep-Learning-basierte Methoden. 1) Interpolationsbasierte Methode Hochauflösende Bildrekonstruktion basierend auf Interpolation

Anmerkungen zur PHP-Studie: Gesichtserkennung und Bildverarbeitung Vorwort: Mit der Entwicklung der Technologie der künstlichen Intelligenz sind Gesichtserkennung und Bildverarbeitung zu heißen Themen geworden. In praktischen Anwendungen werden Gesichtserkennung und Bildverarbeitung hauptsächlich bei der Sicherheitsüberwachung, Gesichtsentsperrung, Kartenvergleich usw. eingesetzt. Als häufig verwendete serverseitige Skriptsprache können mit PHP auch Funktionen zur Gesichtserkennung und Bildverarbeitung implementiert werden. Dieser Artikel führt Sie anhand spezifischer Codebeispiele durch die Gesichtserkennung und Bildverarbeitung in PHP. 1. Gesichtserkennung in PHP Gesichtserkennung ist eine

Für den Umgang mit Bildverarbeitungs- und grafischen Schnittstellendesignproblemen in der C#-Entwicklung sind spezifische Codebeispiele erforderlich. Einführung: In der modernen Softwareentwicklung sind Bildverarbeitung und grafisches Schnittstellendesign gängige Anforderungen. Als universelle Programmiersprache auf hoher Ebene verfügt C# über leistungsstarke Bildverarbeitungs- und grafische Schnittstellendesignfunktionen. Dieser Artikel basiert auf C#, erläutert den Umgang mit Bildverarbeitungs- und Grafikschnittstellendesign-Problemen und gibt detaillierte Codebeispiele. 1. Probleme bei der Bildverarbeitung: Lesen und Anzeigen von Bildern: In C# sind das Lesen und Anzeigen von Bildern grundlegende Vorgänge. Kann verwendet werden.N

Der Scale Invariant Feature Transform (SIFT)-Algorithmus ist ein Merkmalsextraktionsalgorithmus, der in den Bereichen Bildverarbeitung und Computer Vision verwendet wird. Dieser Algorithmus wurde 1999 vorgeschlagen, um die Objekterkennung und die Matching-Leistung in Computer-Vision-Systemen zu verbessern. Der SIFT-Algorithmus ist robust und genau und wird häufig in der Bilderkennung, dreidimensionalen Rekonstruktion, Zielerkennung, Videoverfolgung und anderen Bereichen eingesetzt. Es erreicht Skaleninvarianz, indem es Schlüsselpunkte in mehreren Skalenräumen erkennt und lokale Merkmalsdeskriptoren um die Schlüsselpunkte herum extrahiert. Zu den Hauptschritten des SIFT-Algorithmus gehören die Skalenraumkonstruktion, die Erkennung von Schlüsselpunkten, die Positionierung von Schlüsselpunkten, die Richtungszuweisung und die Generierung von Merkmalsdeskriptoren. Durch diese Schritte kann der SIFT-Algorithmus robuste und einzigartige Merkmale extrahieren und so eine effiziente Bildverarbeitung erreichen.
