Heim > Web-Frontend > js-Tutorial > javascript图像处理—边缘梯度计算函数_javascript技巧

javascript图像处理—边缘梯度计算函数_javascript技巧

WBOY
Freigeben: 2016-05-16 17:43:46
Original
1488 Leute haben es durchsucht
前言

上一篇文章,我们讲解了图像处理中的膨胀和腐蚀函数,这篇文章将做边缘梯度计算函数。

图像的边缘

图像的边缘从数学上是如何表示的呢?

How intensity changes in an edge

图像的边缘上,邻近的像素值应当显著地改变了。而在数学上,导数是表示改变快慢的一种方法。梯度值的大变预示着图像中内容的显著变化了。

用更加形象的图像来解释,假设我们有一张一维图形。下图中灰度值的“跃升”表示边缘的存在:

    Intensity Plot for an edge

使用一阶微分求导我们可以更加清晰的看到边缘“跃升”的存在(这里显示为高峰值):

    First derivative of Intensity - Plot for an edge

由此我们可以得出:边缘可以通过定位梯度值大于邻域的相素的方法找到。

近似梯度

比如内核为3时。

首先对x方向计算近似导数:

G_{x} = \begin{bmatrix}-1 & 0 & +1 \\-2 & 0 & +2 \\-1 & 0 & +1\end{bmatrix} * I

然后对y方向计算近似导数:

G_{y} = \begin{bmatrix}-1 & -2 & -1 \\0 & 0 & 0 \\+1 & +2 & +1\end{bmatrix} * I

然后计算梯度:

G = \sqrt{ G_{x}^{2} + G_{y}^{2} }

当然你也可以写成:

G = |G_{x}| + |G_{y}|

函数实现
复制代码 代码如下:

var Sobel = function(__src, __xorder, __yorder, __size, __borderType, __dst){
(__src && (__xorder ^ __yorder)) || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
if(__src.type && __src.type === "CV_GRAY"){
var kernel1,
kernel2,
height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_16I, 1),
dstData = dst.data
size = __size || 3;
switch(size){
case 1:
size = 3;
case 3:
if(__xorder){
kernel = [-1, 0, 1,
-2, 0, 2,
-1, 0, 1
];
}else if(__yorder){
kernel = [-1, -2, -1,
, 0, 0,
, 2, 1
];
}
break;
case 5:
if(__xorder){
kernel = [-1, -2, 0, 2, 1,
-4, -8, 0, 8, 4,
-6,-12, 0,12, 6,
-4, -8, 0, 8, 4,
-1, -2, 0, 2, 1
];
}else if(__yorder){
kernel = [-1, -4, -6, -4, -1,
-2, -8,-12, -8, -2,
, 0, 0, 0, 0,
, 8, 12, 8, 2,
, 4, 6, 4, 1
];
}
break;
default:
error(arguments.callee, UNSPPORT_SIZE/* {line} */);

}

GRAY216IC1Filter(__src, size, height, width, kernel, dstData, __borderType);

}else{
error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */);
}
return dst;
};

这里只提供了内核大小为3和5的Sobel算子,主要原因是7或以上的内核计算就比较慢了。
输出一个单通道的16位有符号整数矩阵。
复制代码 代码如下:

function GRAY216IC1Filter(__src, size, height, width, kernel, dstData, __borderType){
var start = size >> 1;

var withBorderMat = copyMakeBorder(__src, start, start, 0, 0, __borderType);

var mData = withBorderMat.data,
mWidth = withBorderMat.col;

var i, j, y, x, c;
var newValue, nowX, offsetY, offsetI;

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
newValue = 0;
for(y = size; y--;){
offsetY = (y + i) * mWidth;
for(x = size; x--;){
nowX = x + j;
newValue += (mData[offsetY + nowX] * kernel[y * size + x]);
}
}
dstData[j + offsetI] = newValue;
}
}
}

然后把内核和矩阵交给这个滤波器处理,就OK了。

把这个滤波器独立出来的原因是,可以给其他类似的计算边缘函数使用,比如Laplacian和Scharr算子。

转为无符号8位整数

由于Sobel算子算出来的是16位有符号整数,无法显示成图片,所以我们需要一个函数来将其转为无符号8位整数矩阵。

convertScaleAbs函数是将每个元素取绝对值,然后放到Int8Array数组里面,由于在赋值时候大于255的数会自动转成255,而小于0的数会自动转成0,所以不需要我们做一个函数来负责这一工作。

复制代码 代码如下:

function convertScaleAbs(__src, __dst){
__src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
var height = __src.row,
width = __src.col,
channel = __src.channel,
sData = __src.data;

if(!__dst){
if(channel === 1)
dst = new Mat(height, width, CV_GRAY);
else if(channel === 4)
dst = new Mat(height, width, CV_RGBA);
else
dst = new Mat(height, width, CV_8I, channel);
}else{
dst = __dst;
}

var dData = dst.data;

var i, j, c;

for(i = height; i--;){
for(j = width * channel; j--;){
dData[i * width * channel + j] = Math.abs(sData[i * width * channel + j]);
}
}

return dst;
}
按比例合并值

我们还需要一个函数将x方向梯度计算值和y方向梯度计算值叠加起来。

复制代码 代码如下:

var addWeighted = function(__src1, __alpha, __src2, __beta, __gamma, __dst){
(__src1 && __src2) || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */);
var height = __src1.row,
width = __src1.col,
alpha = __alpha || 0,
beta = __beta || 0,
channel = __src1.channel,
gamma = __gamma || 0;
if(height !== __src2.row || width !== __src2.col || channel !== __src2.channel){
error(arguments.callee, "Src2 must be the same size and channel number as src1!"/* {line} */);
return null;
}

if(!__dst){
if(__src1.type.match(/CV\_\d+/))
dst = new Mat(height, width, __src1.depth(), channel);
else
dst = new Mat(height, width, __src1.depth());
}else{
dst = __dst;
}

var dData = dst.data,
s1Data = __src1.data,
s2Data = __src2.data;

var i;

for(i = height * width * channel; i--;)
dData[i] = __alpha * s1Data[i] + __beta * s2Data[i] + gamma;

return dst;
};

这个函数很简单,实际上只是对两个矩阵的对应元素按固定比例相加而已。 效果图

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage