PHP5 面向对象程序设计
PHP5有一个单重继承的,限制访问的,可以重载的对象模型. 本章稍后会详细讨论的”继承”,包含类间的父-子关系. 另外,PHP支持对属性和方法的限制性访问. 你可以声明成员为private,不允许外部类访问. 最后,PHP允许一个子类从它的父类中重载成员.
PHP5的对象模型把对象看成与任何其它数据类型不同,通过引用来传递. PHP不要求你通过引用(reference)显性传递和返回对象. 在本章的最后将会详细阐述基于引用的对象模型. 它是PHP5中最重要的新特性.
有了更直接的对象模型,就拥有了附加的优势: 效率提高, 占用内存少,并且具有更大的灵活性.
在PHP的前几个版本中,脚本默认复制对象.现在PHP5只移动句柄,需要更少的时间. 脚本执行效率的提升是由于避免了不必要的复制. 在对象体系带来复杂性的同时,也带来了执行效率上的收益. 同时,减少复制意味着占用更少的内存,可以留出更多内存给其它操作,这也使效率提高.
Zand引擎2具有更大的灵活性. 一个令人高兴的发展是允许析构--在对象销毁之前执行一个类方法. 这对于利用内存也很有好处,让PHP清楚地知道什么时候没有对象的引用,把空出的内存分配到其它用途.
补充:
PHP5的内存管理
对象传递
PHP5使用了Zend引擎II,对象被储存于独立的结构Object Store中,而不像其它一般变量那样储存于Zval中(在PHP4中对象和一般变量一样存储于Zval)。在Zval中仅存储对象的指针而不是内容(value)。当我们复制一个对象或者将一个对象当作参数传递给一个函数时,我们不需要复制数据。仅仅保持相同的对象指针并由另一个zval通知现在这个特定的对象指向的Object Store。由于对象本身位于Object Store,我们对它所作的任何改变将影响到所有持有该对象指针的zval结构----表现在程序中就是目标对象的任何改变都会影响到源对象。.这使PHP对象看起来就像总是通过引用(reference)来传递,因此PHP中对象默认为通过“引用”传递,你不再需要像在PHP4中那样使用&来声明。
垃圾回收机制
某些语言,最典型的如C,需要你显式地要求分配内存当你创建数据结构。一旦你分配到内存,就可以在变量中存储信息。同时你也需要在结束使用变量时释放内存,这使机器可以空出内存给其它变量,避免耗光内存。
PHP可以自动进行内存管理,清除不再需要的对象。PHP使用了引用计数(reference counting)这种单纯的垃圾回收(garbage collection)机制。每个对象都内含一个引用计数器,每个reference连接到对象,计数器加1。当reference离开生存空间或被设为NULL,计数器减1。当某个对象的引用计数器为零时,PHP知道你将不再需要使用这个对象,释放其所占的内存空间。
例如:
复制代码 代码如下:
class Person{
}
function sendEmailTo(){
}
$haohappy = new Person( );
// 建立一个新对象: 引用计数 Reference count = 1
$haohappy2 = $haohappy;
// 通过引用复制: Reference count = 2
unset($haohappy);
// 删除一个引用: Reference count = 1
sendEmailTo($haohappy2);
// 通过引用传递对象:
// 在函数执行期间:
// Reference count = 2
// 执行结束后:
// Reference count = 1
unset($haohappy2);
// 删除引用: Reference count = 0 自动释放内存空间
?>

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Verwenden Sie bei der Funktionsvererbung „Basisklassenzeiger“ und „abgeleitete Klassenzeiger“, um den Vererbungsmechanismus zu verstehen: Wenn der Basisklassenzeiger auf das abgeleitete Klassenobjekt zeigt, wird eine Aufwärtstransformation durchgeführt und nur auf die Mitglieder der Basisklasse zugegriffen. Wenn ein abgeleiteter Klassenzeiger auf ein Basisklassenobjekt zeigt, wird eine Abwärtsumwandlung durchgeführt (unsicher) und muss mit Vorsicht verwendet werden.

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

FP8 und die geringere Gleitkomma-Quantifizierungsgenauigkeit sind nicht länger das „Patent“ von H100! Lao Huang wollte, dass jeder INT8/INT4 nutzt, und das Microsoft DeepSpeed-Team begann, FP6 auf A100 ohne offizielle Unterstützung von NVIDIA auszuführen. Testergebnisse zeigen, dass die FP6-Quantisierung der neuen Methode TC-FPx auf A100 nahe an INT4 liegt oder gelegentlich schneller als diese ist und eine höhere Genauigkeit aufweist als letztere. Darüber hinaus gibt es eine durchgängige Unterstützung großer Modelle, die als Open-Source-Lösung bereitgestellt und in Deep-Learning-Inferenz-Frameworks wie DeepSpeed integriert wurde. Dieses Ergebnis wirkt sich auch unmittelbar auf die Beschleunigung großer Modelle aus – in diesem Rahmen ist der Durchsatz bei Verwendung einer einzelnen Karte zum Ausführen von Llama 2,65-mal höher als der von Doppelkarten. eins

Um große Sprachmodelle (LLMs) an menschlichen Werten und Absichten auszurichten, ist es wichtig, menschliches Feedback zu lernen, um sicherzustellen, dass sie nützlich, ehrlich und harmlos sind. Im Hinblick auf die Ausrichtung von LLM ist Reinforcement Learning basierend auf menschlichem Feedback (RLHF) eine wirksame Methode. Obwohl die Ergebnisse der RLHF-Methode ausgezeichnet sind, gibt es einige Herausforderungen bei der Optimierung. Dazu gehört das Training eines Belohnungsmodells und die anschließende Optimierung eines Richtlinienmodells, um diese Belohnung zu maximieren. Kürzlich haben einige Forscher einfachere Offline-Algorithmen untersucht, darunter die direkte Präferenzoptimierung (Direct Preference Optimization, DPO). DPO lernt das Richtlinienmodell direkt auf der Grundlage von Präferenzdaten, indem es die Belohnungsfunktion in RLHF parametrisiert, wodurch die Notwendigkeit eines expliziten Belohnungsmodells entfällt. Diese Methode ist einfach und stabil

Übersicht LLaMA-3 (LargeLanguageModelMetaAI3) ist ein groß angelegtes Open-Source-Modell für generative künstliche Intelligenz, das von Meta Company entwickelt wurde. Im Vergleich zur Vorgängergeneration LLaMA-2 gibt es keine wesentlichen Änderungen in der Modellstruktur. Das LLaMA-3-Modell ist in verschiedene Maßstabsversionen unterteilt, darunter kleine, mittlere und große, um unterschiedlichen Anwendungsanforderungen und Rechenressourcen gerecht zu werden. Die Parametergröße kleiner Modelle beträgt 8 B, die Parametergröße mittlerer Modelle beträgt 70 B und die Parametergröße großer Modelle erreicht 400 B. Beim Training besteht das Ziel jedoch darin, multimodale und mehrsprachige Funktionalität zu erreichen, und die Ergebnisse werden voraussichtlich mit GPT4/GPT4V vergleichbar sein. Ollama installierenOllama ist ein Open-Source-Großsprachenmodell (LL
