Python中__init__和__new__的区别详解
__init__ 方法是什么?
使用Python写过面向对象的代码的同学,可能对 __init__ 方法已经非常熟悉了,__init__ 方法通常用在初始化一个类实例的时候。例如:
# -*- coding: utf-8 -*- class Person(object): """Silly Person""" def __init__(self, name, age): self.name = name self.age = age def __str__(self): return '<Person: %s(%s)>' % (self.name, self.age) if __name__ == '__main__': piglei = Person('piglei', 24) print piglei
这样便是__init__最普通的用法了。但__init__其实不是实例化一个类的时候第一个被调用 的方法。当使用 Persion(name, age) 这样的表达式来实例化一个类时,最先被调用的方法 其实是 __new__ 方法。
__new__ 方法是什么?
__new__方法接受的参数虽然也是和__init__一样,但__init__是在类实例创建之后调用,而 __new__方法正是创建这个类实例的方法。
# -*- coding: utf-8 -*- class Person(object): """Silly Person""" def __new__(cls, name, age): print '__new__ called.' return super(Person, cls).__new__(cls, name, age) def __init__(self, name, age): print '__init__ called.' self.name = name self.age = age def __str__(self): return '<Person: %s(%s)>' % (self.name, self.age) if __name__ == '__main__': piglei = Person('piglei', 24) print piglei
执行结果:
piglei@macbook-pro:blog$ python new_and_init.py __new__ called. __init__ called. <Person: piglei(24)>
通过运行这段代码,我们可以看到,__new__方法的调用是发生在__init__之前的。其实当 你实例化一个类的时候,具体的执行逻辑是这样的:
1.p = Person(name, age)
2.首先执行使用name和age参数来执行Person类的__new__方法,这个__new__方法会 返回Person类的一个实例(通常情况下是使用 super(Persion, cls).__new__(cls, ... ...) 这样的方式)
3.然后利用这个实例来调用类的__init__方法,上一步里面__new__产生的实例也就是 __init__里面的的 self
所以,__init__ 和 __new__ 最主要的区别在于:
1.__init__ 通常用于初始化一个新实例,控制这个初始化的过程,比如添加一些属性, 做一些额外的操作,发生在类实例被创建完以后。它是实例级别的方法。
2.__new__ 通常用于控制生成一个新实例的过程。它是类级别的方法。
但是说了这么多,__new__最通常的用法是什么呢,我们什么时候需要__new__?
__new__ 的作用
依照Python官方文档的说法,__new__方法主要是当你继承一些不可变的class时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。还有就是实现自定义的metaclass。
首先我们来看一下第一个功能,具体我们可以用int来作为一个例子:
假如我们需要一个永远都是正数的整数类型,通过集成int,我们可能会写出这样的代码。
class PositiveInteger(int): def __init__(self, value): super(PositiveInteger, self).__init__(self, abs(value)) i = PositiveInteger(-3) print i
但运行后会发现,结果根本不是我们想的那样,我们任然得到了-3。这是因为对于int这种 不可变的对象,我们只有重载它的__new__方法才能起到自定义的作用。
这是修改后的代码:
class PositiveInteger(int): def __new__(cls, value): return super(PositiveInteger, cls).__new__(cls, abs(value)) i = PositiveInteger(-3) print i
通过重载__new__方法,我们实现了需要的功能。
另外一个作用,关于自定义metaclass。其实我最早接触__new__的时候,就是因为需要自定义 metaclass,但鉴于篇幅原因,我们下次再来讲python中的metaclass和__new__的关系。
用__new__来实现单例
事实上,当我们理解了__new__方法后,我们还可以利用它来做一些其他有趣的事情,比如实现 设计模式中的 单例模式(singleton) 。
因为类每一次实例化后产生的过程都是通过__new__来控制的,所以通过重载__new__方法,我们 可以很简单的实现单例模式。
class Singleton(object): def __new__(cls): # 关键在于这,每一次实例化的时候,我们都只会返回这同一个instance对象 if not hasattr(cls, 'instance'): cls.instance = super(Singleton, cls).__new__(cls) return cls.instance obj1 = Singleton() obj2 = Singleton() obj1.attr1 = 'value1' print obj1.attr1, obj2.attr1 print obj1 is obj2
输出结果:
value1 value1
True
可以看到obj1和obj2是同一个实例。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

VS Code ist der vollständige Name Visual Studio Code, der eine kostenlose und open-Source-plattformübergreifende Code-Editor und Entwicklungsumgebung von Microsoft ist. Es unterstützt eine breite Palette von Programmiersprachen und bietet Syntax -Hervorhebung, automatische Codebettel, Code -Snippets und intelligente Eingabeaufforderungen zur Verbesserung der Entwicklungseffizienz. Durch ein reiches Erweiterungs -Ökosystem können Benutzer bestimmte Bedürfnisse und Sprachen wie Debugger, Code -Formatierungs -Tools und Git -Integrationen erweitern. VS -Code enthält auch einen intuitiven Debugger, mit dem Fehler in Ihrem Code schnell gefunden und behoben werden können.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.
