从零学python系列之数据处理编程实例(二)
在上一节从零学python系列之数据处理编程实例(一)的基础上数据发生了变化,文件中除了学生的成绩外,新增了学生姓名和出生年月的信息,因此将要成变成:分别根据姓名输出每个学生的无重复的前三个最好成绩和出生年月
数据准备:分别建立四个文本文件
james2.txt James Lee,2002-3-14,2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22
julie2.txt Julie Jones,2002-8-17,2.59,2.11,2:11,2:23,3-10,2-23,3:10,3.21,3-21
mikey2.txt Mikey McManus,2002-2-24,2:22,3.01,3:01,3.02,3:02,3.02,3:22,2.49,2:38
sarah2.txt Sarah Sweeney,2002-6-17,2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55
在上一节基础上,修改部分代码,将新要求实现如下:
import os
print(os.getcwd())
os.chdir('C:\Python33\HeadFirstPython\hfpy_code\chapter6') #将工作空间修改为文件所在的目录
#定义函数get_filedata从文件中取值
def get_filedata(filename):
try:
with open(filename) as f: #with语句打开和自动关闭文件
data=f.readline() #从文件中逐行读取字符
data_list=data.strip().split(',') #将字符间的空格清除后,用逗号分隔字符
return({
"name" : data_list.pop(0),
"date_of_birth" : data_list.pop(0),
"times" : str(sorted(set([modify_time_format(s) for s in data_list]))[0:3])
}) #使用字典将关联的姓名,出生年月,时间键和值进行存储并返回
except IOError as ioerr:
print ('File Error' + str(ioerr)) #异常处理,打印错误
return (None)
#定义函数modify_time_format将所有文件中的时分表达方式统一为“分.秒”
def modify_time_format(time_string):
if "-" in time_string:
splitter="-"
elif ":" in time_string:
splitter=":"
else:
splitter="."
(mins, secs)=time_string.split(splitter) #用分隔符splitter分隔字符后分别存入mins和secs
return (mins+ '.' +secs)
#定义函数get_prev_three返回文件中排名前三的不重复的时间成绩
def get_prev_three(filename):
new_list=[modify_time_format(each_t) for each_t in get_filedata(filename)] #采用列表推导将统一时分表达方式后的记录生成新的列表
delete_repetition=set(new_list) #采用集合set函数删除新列表中重复项,并生成新的集合
in_order=sorted(delete_repetition) #采用复制排序sorted函数对无重复性的新集合进行排序
return (in_order[0:3])
#输出james的排名前三的不重复成绩和出生年月
james = get_filedata('james2.txt')
print (james["name"]+"'s fastest times are: " + james["times"])
print (james["name"] + "'s birthday is: " + james["date_of_birth"])
#输出julie的排名前三的不重复成绩和出生年月
julie = get_filedata('julie2.txt')
print (julie["name"]+"'s fastest times are: " + julie["times"])
print (julie["name"] + "'s birthday is: " + julie["date_of_birth"])
#输出mikey的排名前三的不重复成绩和出生年月
mikey = get_filedata('mikey2.txt')
print (mikey["name"]+"'s fastest times are: " + mikey["times"])
print (mikey["name"] + "'s birthday is: " + mikey["date_of_birth"])
#输出sarah的排名前三的不重复成绩和出生年月
sarah = get_filedata('sarah2.txt')
print (sarah["name"]+"'s fastest times are: " + sarah["times"])
print (sarah["name"] + "'s birthday is: " + sarah["date_of_birth"])
通过建立继承内置list的类AthleteList,将方法定义在类中实现相同功能:
import os
print(os.getcwd())
os.chdir('C:\Python33\HeadFirstPython\hfpy_code\chapter6') #将工作空间修改为文件所在的目录
#定义类AthleteList继承python内置的list
class AthleteList(list):
def __init__(self, name, dob=None, times=[]):
list.__init__([])
self.name=name
self.dob=dob
self.extend(times)
def get_prev_three(self):
return (sorted(set([modify_time_format(t) for t in self]))[0:3])
def get_filedata(filename):
try:
with open(filename) as f: #with语句打开和自动关闭文件
data=f.readline() #从文件中逐行读取字符
data_list=data.strip().split(',') #将字符间的空格清除后,用逗号分隔字符
return(
AthleteList(data_list.pop(0), data_list.pop(0), data_list)
) #使用字典将关联的姓名,出生年月,时间键和值进行存储并返回
except IOError as ioerr:
print ('File Error' + str(ioerr)) #异常处理,打印错误
return (None)
def modify_time_format(time_string):
if "-" in time_string:
splitter="-"
elif ":" in time_string:
splitter=":"
else:
splitter="."
(mins, secs)=time_string.split(splitter) #用分隔符splitter分隔字符后分别存入mins和secs
return (mins+ '.' +secs)
james = get_filedata('james2.txt')
print (james.name+"'s fastest times are: " + str(james.get_prev_three()))
julie = get_filedata('julie2.txt')
print (julie.name+"'s fastest times are: " + str(julie.get_prev_three()))
mikey = get_filedata('mikey2.txt')
print (mikey.name+"'s fastest times are: " + str(mikey.get_prev_three()))
sarah = get_filedata('sarah2.txt')
print (sarah.name+"'s fastest times are: " + str(sarah.get_prev_three()))

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Effizientes Training von Pytorch -Modellen auf CentOS -Systemen erfordert Schritte, und dieser Artikel bietet detaillierte Anleitungen. 1.. Es wird empfohlen, YUM oder DNF zu verwenden, um Python 3 und Upgrade PIP zu installieren: Sudoyumupdatepython3 (oder sudodnfupdatepython3), PIP3Install-upgradepip. CUDA und CUDNN (GPU -Beschleunigung): Wenn Sie Nvidiagpu verwenden, müssen Sie Cudatool installieren

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Bei der Auswahl einer Pytorch -Version unter CentOS müssen die folgenden Schlüsselfaktoren berücksichtigt werden: 1. Cuda -Version Kompatibilität GPU -Unterstützung: Wenn Sie NVIDIA -GPU haben und die GPU -Beschleunigung verwenden möchten, müssen Sie Pytorch auswählen, der die entsprechende CUDA -Version unterstützt. Sie können die CUDA-Version anzeigen, die unterstützt wird, indem Sie den Befehl nvidia-smi ausführen. CPU -Version: Wenn Sie keine GPU haben oder keine GPU verwenden möchten, können Sie eine CPU -Version von Pytorch auswählen. 2. Python Version Pytorch

Effizient verarbeiten Pytorch-Daten zum CentOS-System, die folgenden Schritte sind erforderlich: Abhängigkeit Installation: Aktualisieren Sie zuerst das System und installieren Sie Python3 und PIP: Sudoyumupdate-Judoyuminstallpython3-Tysudoyuminstallpython3-Pip-y, Download und installieren Sie Cudatoolkit und Cudnn-Model von der NVIDIA-offiziellen Website. Konfiguration der virtuellen Umgebung (empfohlen): Verwenden Sie Conda, um eine neue virtuelle Umgebung zu erstellen und zu aktivieren, zum Beispiel: condacreate-n

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
