python实现代理服务功能实例
代理服务原理很简单,就拿浏览器与web服务器来说。无非是A浏览器
发request给B代理,B代理再把request把送给C web服务,然后C的reponse->B->A。
要写web代理服务就要先了解下http协议,当然并不要多深入,除非要实现强大的功能:修改XX信息、
负载均衡等。http请求由三部分组成:请求行、消息报头、请求正文;
详细的网上有,想了解可以看看。下面是一个正常的GET请求头(Cookie部分本人没截屏,使用的系统w7):
可以看到首行:GET是请求方法, /是路径,在后面是协议版本;第二行以后是请求报头,都是键值对形式;
GET方法没有正文。post有正文,除此之外,请求方法头部基本一致,每一行结尾都是\r\n。
基本的请求方法,如下:
GET 请求获取Request-URI所标识的资源
POST 在Request-URI所标识的资源后附加新的数据
HEAD 请求获取由Request-URI所标识的资源的响应消息报头
PUT 请求服务器存储一个资源,并用Request-URI作为其标识
DELETE 请求服务器删除Request-URI所标识的资源
TRACE 请求服务器回送收到的请求信息,主要用于测试或诊断
CONNECT 保留将来使用
OPTIONS 请求查询服务器的性能,或者查询与资源相关的选项和需求
但是使用代理后,从代理服务上得到的请求如下:
与第一张图片对比一下,有什么不同......第一行的资源路径不对。当浏览器上设置代理请求时把整个url都作为资源路径了,所以我们要把域名删掉,然后代理服务器在把修改后的请求发送给目标
web服务器。就这么简单,当然CONNECT方法特别,要特别对待,所以先说其他方法。
基本的思路:
1、代理服务器运行监听,当有客户端浏览器请求到来时通过accept()获得client句柄(或者叫描述符);
2、利用client描述符接收浏览器发来的request,分离出第一行为了修改第一行和获得method,
要去掉的的部分,除去http://的部分用targetHost表示吧。
3、通过第2步能够获得方法method、request和targetHost,这一步可以根据不同的method做不同的处理,
由于GET、POET、PUT、DELETE等除了CONNECT处理基本一致,所以处理首行,比如:
GET http://www.a.com/ HTTP/1.1
替换为
GET / HTTP/1.1
此时targetHost也就是红色的部分,默认的请求80端口,此时port为80;如果targetHost中有端口(比如www.a.com:8081),
就要分理处端口,此时port为8081。然后根据targetHost和port连接到目标服务器target了,实现代码如下:
def getTargetInfo(self,host): #处理targetHost获得网址和端口,作为返回值。
port=0
site=None
if ':' in host:
tmp=host.split(':')
site=tmp[0]
port=int(tmp[1])
else:
site=host
port=80
return site,port
def commonMethod(self,request): #处理除CONNECT以外的方法
tmp=self.targetHost.split('/')
net=tmp[0]+'//'+tmp[2]
request=request.replace(net,'') #替换掉首行不必要的部分
targetAddr=self.getTargetInfo(tmp[2]) #调用上面的函数
try:
(fam,_,_,_,addr)=socket.getaddrinfo(targetAddr[0],targetAddr[1])[0]
except Exception as e:
print e
return
self.target=socket.socket(fam)
self.target.connect(addr) #连接到目标web服务
4、这一步就好办了,根据第三步处理后的request就可以self.target.send(request)发送给web服务器了。
5、这一步web服务器的reponse反响通过代理服务直接转发给客户端就行了,本人用了非阻塞select,可以试试epoll。
基本步骤就是这样,使用的方法函数可以改进,比如主函数部分使用的多线程或者多进程,怎样选择......
但是思路差不多都是这样啦。想测试的话,chrome安装SwitchySharp插件,设置一下,代理端口8083;
firefox插件autoproxy。
对于connect的处理还在解决中(如果有博友帮助就更好了),所以现在这个代理程序不支持https协议。
代理服务可以获得http协议的所有信息,想了解学习http,利用代理服务器是个不错的方法。
下面附上代码
#-*- coding: UTF-8 -*-
import socket,select
import sys
import thread
from multiprocessing import Process
class Proxy:
def __init__(self,soc):
self.client,_=soc.accept()
self.target=None
self.request_url=None
self.BUFSIZE=4096
self.method=None
self.targetHost=None
def getClientRequest(self):
request=self.client.recv(self.BUFSIZE)
if not request:
return None
cn=request.find('\n')
firstLine=request[:cn]
print firstLine[:len(firstLine)-9]
line=firstLine.split()
self.method=line[0]
self.targetHost=line[1]
return request
def commonMethod(self,request):
tmp=self.targetHost.split('/')
net=tmp[0]+'//'+tmp[2]
request=request.replace(net,'')
targetAddr=self.getTargetInfo(tmp[2])
try:
(fam,_,_,_,addr)=socket.getaddrinfo(targetAddr[0],targetAddr[1])[0]
except Exception as e:
print e
return
self.target=socket.socket(fam)
self.target.connect(addr)
self.target.send(request)
self.nonblocking()
def connectMethod(self,request): #对于CONNECT处理可以添加在这里
pass
def run(self):
request=self.getClientRequest()
if request:
if self.method in ['GET','POST','PUT',"DELETE",'HAVE']:
self.commonMethod(request)
elif self.method=='CONNECT':
self.connectMethod(request)
def nonblocking(self):
inputs=[self.client,self.target]
while True:
readable,writeable,errs=select.select(inputs,[],inputs,3)
if errs:
break
for soc in readable:
data=soc.recv(self.BUFSIZE)
if data:
if soc is self.client:
self.target.send(data)
elif soc is self.target:
self.client.send(data)
else:
break
self.client.close()
self.target.close()
def getTargetInfo(self,host):
port=0
site=None
if ':' in host:
tmp=host.split(':')
site=tmp[0]
port=int(tmp[1])
else:
site=host
port=80
return site,port
if __name__=='__main__':
host = '127.0.0.1'
port = 8083
backlog = 5
server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
server.bind((host,port))
server.listen(5)
while True:
thread.start_new_thread(Proxy(server).run,())
# p=Process(target=Proxy(server).run, args=()) #多进程
# p.start()

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti
