Vorwort
Codeoptimierung ist ein sehr wichtiges Thema. Manche Leute denken vielleicht, dass es nutzlos ist. Welche kleinen Dinge können geändert werden? Welche Auswirkungen hat die Änderung auf die Ausführungseffizienz des Codes? Ich denke über diese Frage nach: Ist es für einen Wal im Meer sinnvoll, eine kleine Garnele zu fressen? Es war nutzlos, aber nachdem er weitere Garnelen gegessen hatte, war der Wal satt. Das Gleiche gilt für die Codeoptimierung. Wenn sich das Projekt darauf konzentriert, so schnell wie möglich ohne Fehler zu starten, können Sie sich zu diesem Zeitpunkt auf das Große konzentrieren und das Kleine loslassen, und die Details des Codes müssen nicht verfeinert werden ; Wenn jedoch genügend Zeit für die Entwicklung und Wartung des Codes vorhanden ist, müssen Sie zu diesem Zeitpunkt jeden Aspekt berücksichtigen. Die Anhäufung kleiner Optimierungspunkte nacheinander wird die Laufeffizienz des Codes definitiv verbessern.
Die Ziele der Codeoptimierung sind:
1. Reduzieren Sie die Größe des Codes
2. Verbessern Sie die Effizienz der Codeausführung
Details zur Codeoptimierung
1. Versuchen Sie, den Endmodifikator von Klassen und Methoden anzugeben.
Klassen mit Endmodifikator können nicht abgeleitet werden. In der Java-Kern-API gibt es viele Beispiele für endgültige Anwendungen, z. B. java.lang.String, bei dem die gesamte Klasse endgültig ist. Durch die Angabe des letzten Modifikators für eine Klasse wird verhindert, dass die Klasse vererbt wird, und durch die Angabe des letzten Modifikators für eine Methode wird verhindert, dass die Methode überschrieben wird. Wenn eine Klasse als final bezeichnet wird, sind alle Methoden der Klasse final. Der Java-Compiler sucht nach Möglichkeiten, alle endgültigen Methoden zu integrieren. Inlining spielt eine wichtige Rolle bei der Verbesserung der Java-Laufzeitoptimierung. Dadurch kann die Leistung um durchschnittlich 50 % verbessert werden.
2. Versuchen Sie, Objekte wiederzuverwenden
Insbesondere für die Verwendung von String-Objekten sollte stattdessen StringBuilder/StringBuffer verwendet werden, wenn String-Verbindungen auftreten. Da die Java Virtual Machine nicht nur Zeit damit verbringt, Objekte zu generieren, muss sie möglicherweise in Zukunft auch Zeit damit verbringen, diese Objekte zu sammeln und zu verarbeiten. Daher hat die Generierung zu vieler Objekte große Auswirkungen auf die Leistung des Programms.
3. Verwenden Sie so viel wie möglich lokale Variablen
Die beim Aufruf der Methode übergebenen Parameter und die während des Aufrufs erstellten temporären Variablen werden schneller auf dem Stapel gespeichert. Andere Variablen, z. B. statische Variablen und Instanzen, Variablen usw. werden alle im Heap erstellt, was langsamer ist. Darüber hinaus gehen die Inhalte der auf dem Stapel erstellten Variablen verloren, wenn die Methode endet, und es ist keine zusätzliche Speicherbereinigung erforderlich.
4. Schließen Sie den Stream umgehend
Seien Sie während der Java-Programmierung vorsichtig, wenn Sie Datenbankverbindungen und E/A-Stream-Vorgänge durchführen. Schließen Sie den Stream nach der Verwendung rechtzeitig, um Ressourcen freizugeben. Da der Betrieb dieser großen Objekte einen hohen Systemaufwand verursacht, kann eine kleine Nachlässigkeit schwerwiegende Folgen haben.
5. Minimieren Sie wiederholte Berechnungen von Variablen
Machen Sie deutlich, dass der Aufruf einer Methode, selbst wenn nur eine Anweisung in der Methode vorhanden ist, kostspielig ist, auch beim Erstellen eines Stapelrahmens und beim Aufrufen einer Methode schützen Sie die Szene, stellen Sie die Szene wieder her, wenn die Methode aufgerufen wird usw. So zum Beispiel die folgende Operation:
for (int i = 0; i < list.size(); i++) {...}
Es wird empfohlen, sie zu ersetzen durch:
for (int i = 0, int length = list.size(); i < length; i++) {...}
Auf diese Weise, wenn list.size() sehr groß ist, viel des Verbrauchs wird reduziert
6、尽量采用懒加载的策略,即在需要的时候才创建
例如:
String str = "aaa";if (i == 1) { list.add(str); }
建议替换为:
if (i == 1) { String str = "aaa"; list.add(str); }
7、慎用异常
异常对性能不利。抛出异常首先要创建一个新的对象,Throwable接口的构造函数调用名为fillInStackTrace()的本地同步方法,fillInStackTrace()方法检查堆栈,收集调用跟踪信息。只要有异常被抛出,Java虚拟机就必须调整调用堆栈,因为在处理过程中创建了一个新的对象。异常只能用于错误处理,不应该用来控制程序流程。
8、不要在循环中使用try…catch…,应该把其放在最外层
除非不得已。如果毫无理由地这么写了,只要你的领导资深一点、有强迫症一点,八成就要骂你为什么写出这种垃圾代码来了
9、如果能估计到待添加的内容长度,为底层以数组方式实现的集合、工具类指定初始长度
比如ArrayList、LinkedLlist、StringBuilder、StringBuffer、HashMap、HashSet等等,以StringBuilder为例:
(1)StringBuilder() // 默认分配16个字符的空间
(2)StringBuilder(int size) // 默认分配size个字符的空间
(3)StringBuilder(String str) // 默认分配16个字符+str.length()个字符空间
可以通过类(这里指的不仅仅是上面的StringBuilder)的来设定它的初始化容量,这样可以明显地提升性能。比如StringBuilder吧,length表示当前的StringBuilder能保持的字符数量。因为当StringBuilder达到最大容量的时候,它会将自身容量增加到当前的2倍再加2,无论何时只要StringBuilder达到它的最大容量,它就不得不创建一个新的字符数组然后将旧的字符数组内容拷贝到新字符数组中—-这是十分耗费性能的一个操作。试想,如果能预估到字符数组中大概要存放5000个字符而不指定长度,最接近5000的2次幂是4096,每次扩容加的2不管,那么:
(1)在4096 的基础上,再申请8194个大小的字符数组,加起来相当于一次申请了12290个大小的字符数组,如果一开始能指定5000个大小的字符数组,就节省了一倍以上的空间
(2)把原来的4096个字符拷贝到新的的字符数组中去
这样,既浪费内存空间又降低代码运行效率。所以,给底层以数组实现的集合、工具类设置一个合理的初始化容量是错不了的,这会带来立竿见影的效果。但是,注意,像HashMap这种是以数组+链表实现的集合,别把初始大小和你估计的大小设置得一样,因为一个table上只连接一个对象的可能性几乎为0。初始大小建议设置为2的N次幂,如果能估计到有2000个元素,设置成new HashMap(128)、new HashMap(256)都可以。
10、当复制大量数据时,使用System.arraycopy()命令
11、乘法和除法使用移位操作
例如:
for (val = 0; val < 100000; val += 5) { a = val * 8; b = val / 2; }
用移位操作可以极大地提高性能,因为在计算机底层,对位的操作是最方便、最快的,因此建议修改为:
for (val = 0; val < 100000; val += 5) { a = val << 3; b = val >> 1; }
移位操作虽然快,但是可能会使代码不太好理解,因此最好加上相应的注释。
12、循环内不要不断创建对象引用
例如:
for (int i = 1; i <= count; i++) { Object obj = new Object(); }
这种做法会导致内存中有count份Object对象引用存在,count很大的话,就耗费内存了,建议为改为:
Object obj = null;for (int i = 0; i <= count; i++) { obj = new Object(); }
这样的话,内存中只有一份Object对象引用,每次new Object()的时候,Object对象引用指向不同的Object罢了,但是内存中只有一份,这样就大大节省了内存空间了。
13、基于效率和类型检查的考虑,应该尽可能使用array,无法确定数组大小时才使用ArrayList
14、尽量使用HashMap、ArrayList、StringBuilder,除非线程安全需要,否则不推荐使用Hashtable、Vector、StringBuffer,后三者由于使用同步机制而导致了性能开销
15、不要将数组声明为public static final
因为这毫无意义,这样只是定义了引用为static final,数组的内容还是可以随意改变的,将数组声明为public更是一个安全漏洞,这意味着这个数组可以被外部类所改变
16、尽量在合适的场合使用单例
使用单例可以减轻加载的负担、缩短加载的时间、提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面:
(1)控制资源的使用,通过线程同步来控制资源的并发访问
(2)控制实例的产生,以达到节约资源的目的
(3)控制数据的共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信
17、尽量避免随意使用静态变量
要知道,当某个对象被定义为static的变量所引用,那么gc通常是不会回收这个对象所占有的堆内存的,如:
public class A { private static B b = new B(); }
此时静态变量b的生命周期与A类相同,如果A类不被卸载,那么引用B指向的B对象会常驻内存,直到程序终止
18、及时清除不再需要的会话
为了清除不再活动的会话,许多应用服务器都有默认的会话超时时间,一般为30分钟。当应用服务器需要保存更多的会话时,如果内存不足,那么操作系统会把部分数据转移到磁盘,应用服务器也可能根据MRU(最近最频繁使用)算法把部分不活跃的会话转储到磁盘,甚至可能抛出内存不足的异常。如果会话要被转储到磁盘,那么必须要先被序列化,在大规模集群中,对对象进行序列化的代价是很昂贵的。因此,当会话不再需要时,应当及时调用HttpSession的invalidate()方法清除会话。
19、实现RandomAccess接口的集合比如ArrayList,应当使用最普通的for循环而不是foreach循环来遍历
这是JDK推荐给用户的。JDK API对于RandomAccess接口的解释是:实现RandomAccess接口用来表明其支持快速随机访问,此接口的主要目的是允许一般的算法更改其行为,从而将其应用到随机或连续访问列表时能提供良好的性能。实际经验表明,实现RandomAccess接口的类实例,假如是随机访问的,使用普通for循环效率将高于使用foreach循环;反过来,如果是顺序访问的,则使用Iterator会效率更高。可以使用类似如下的代码作判断:
if (list instanceof RandomAccess) { for (int i = 0; i < list.size(); i++){} }else{ Iterator<?> iterator = list.iterable(); while (iterator.hasNext()){iterator.next()} }
foreach循环的底层实现原理就是迭代器Iterator,参见Java语法糖1:可变长度参数以及foreach循环原理。所以后半句”反过来,如果是顺序访问的,则使用Iterator会效率更高”的意思就是顺序访问的那些类实例,使用foreach循环去遍历。
20. Verwenden Sie synchronisierte Codeblöcke anstelle synchronisierter Methoden
Dies wurde im Artikel Synchronisierte Sperrmethodenblöcke in Multithread-Modulen klar angegeben, es sei denn, es wird festgestellt, dass eine gesamte Methode synchronisiert werden muss. Andernfalls Versuchen Sie, synchronisierte Codeblöcke zu verwenden, um die Synchronisierung von Codes zu vermeiden, die nicht synchronisiert werden müssen, was sich auf die Effizienz der Codeausführung auswirkt.
21. Deklarieren Sie die Konstanten als statisches Finale und benennen Sie sie in Großbuchstaben
Auf diese Weise können Sie diese Inhalte während der Kompilierung in den Konstantenpool einfügen, um zu vermeiden, dass der Wert der Konstante zur Laufzeit berechnet wird. Darüber hinaus kann die Benennung von Konstanten in Großbuchstaben auch die Unterscheidung von Konstanten und Variablen erleichtern
22. Erstellen Sie keine nicht verwendeten Objekte und importieren Sie nicht einige nicht verwendete Klassen
Dies ist bedeutungslos, wenn „Der Wert der lokalen Variablen i wird nicht verwendet“ oder „Der Import java.util wird nie verwendet“ erscheint im Code, dann löschen Sie bitte diese nutzlosen Inhalte
23. Vermeiden Sie die Verwendung, während das Programm ausgeführt wird Reflexion
Über, siehe Reflexion. Reflection ist eine sehr leistungsstarke Funktion, die Java den Benutzern bietet. Leistungsstarke Funktionen bedeuten oft eine geringe Effizienz. Es wird nicht empfohlen, den Reflexionsmechanismus während der Ausführung des Programms zu verwenden, insbesondere die häufige Verwendung des Reflexionsmechanismus, insbesondere der Aufrufmethode der Methode. Wenn dies wirklich erforderlich ist, besteht ein empfohlener Ansatz darin, Reflexionsinstanzen für die Klassen zu verwenden, die benötigt werden Wird durch Reflektion geladen, wenn das Projekt gestartet wird. Erstellen Sie ein Objekt und legen Sie es im Speicher ab. Der Benutzer kümmert sich nur darum, die schnellste Antwort zu erhalten, wenn er mit dem Peer interagiert, und kümmert sich nicht darum, wie lange es dauert, bis das Projekt des Peers startet .
24. Datenbankverbindungspool und Threadpool verwenden
Diese beiden Pools werden zur Wiederverwendung von Objekten verwendet. Ersteres kann das häufige Öffnen und Schließen von Verbindungen vermeiden, und letzteres kann das häufige Erstellen und Zerstören vermeiden Threads
25. Verwenden Sie gepufferte Eingabe- und Ausgabeströme für E/A-Vorgänge
Gepufferte Eingabe- und Ausgabeströme, nämlich BufferedReader, BufferedWriter, BufferedInputStream, BufferedOutputStream, können die E/A-Effizienz erheblich verbessern
26. Verwenden Sie ArrayList in Szenarien mit vielen sequentiellen Einfügungen und Direktzugriffen und LinkedList in Szenarien mit vielen Elementlöschungen und Zwischeneinfügungen
Dies gilt nur, wenn Sie die Prinzipien von ArrayList und LinkedList verstehen
27. Lassen Sie nicht zu, dass öffentliche Methoden zu viele formale Parameter haben.
Öffentliche Methoden sind Methoden, die der Außenwelt zur Verfügung gestellt werden. Wenn Sie diesen Methoden zu viele formale Parameter geben, gibt es zwei Hauptnachteile :
1. Es verstößt gegen die Idee der objektorientierten Programmierung. Java betont, dass alles ein Objekt ist. Zu viele formale Parameter stehen nicht im Einklang mit der Idee der objektorientierten Programmierung 🎜> 2. Zu viele Parameter führen unweigerlich zu Methodenaufrufen
Wie viele sich auf „zu viele“ beziehen, sind vielleicht 3 oder 4. Beispielsweise verwenden wir JDBC, um eine insertStudentInfo-Methode zu schreiben. Es gibt 10 Studenteninformationsfelder, die in eine Entitätsklasse als formale Parameter der Einfügemethode
gekapselt werden können28、字符串变量和字符串常量equals的时候将字符串常量写在前面
这是一个比较常见的小技巧了,如果有以下代码:
String str = "123"; if (str.equals("123")) { ... }
建议修改为:
String str = "123"; if ("123".equals(str)) { ... }
这么做主要是可以避免空指针异常
29、请知道,在java中if (i == 1)和if (1 == i)是没有区别的,但从阅读习惯上讲,建议使用前者
平时有人问,”if (i == 1)”和”if (1== i)”有没有区别,这就要从C/C++讲起。
在C/C++中,”if (i == 1)”判断条件成立,是以0与非0为基准的,0表示false,非0表示true,如果有这么一段代码:
int i = 2; if (i == 1) { ... }else{ ... }
C/C++判断”i==1″不成立,所以以0表示,即false。但是如果:
int i = 2;if (i = 1) { ... }else{ ... }
万一程序员一个不小心,把”if (i == 1)”写成”if (i = 1)”,这样就有问题了。在if之内将i赋值为1,if判断里面的内容非0,返回的就是true了,但是明明i为2,比较的值是1,应该返回的false。这种情况在C/C++的开发中是很可能发生的并且会导致一些难以理解的错误产生,所以,为了避免开发者在if语句中不正确的赋值操作,建议将if语句写为:
int i = 2;if (1 == i) { ... }else{ ... }
这样,即使开发者不小心写成了”1 = i”,C/C++编译器也可以第一时间检查出来,因为我们可以对一个变量赋值i为1,但是不能对一个常量赋值1为i。
但是,在Java中,C/C++这种”if (i = 1)”的语法是不可能出现的,因为一旦写了这种语法,Java就会编译报错”Type mismatch: cannot convert from int to boolean”。但是,尽管Java的”if (i == 1)”和”if (1 == i)”在语义上没有任何区别,但是从阅读习惯上讲,建议使用前者会更好些。
30、不要对数组使用toString()方法
看一下对数组使用toString()打印出来的是什么:
public static void main(String[] args) { int[] is = new int[]{1, 2, 3}; System.out.println(is.toString()); }
结果是:
[I@18a992f
本意是想打印出数组内容,却有可能因为数组引用is为空而导致空指针异常。不过虽然对数组toString()没有意义,但是对集合toString()是可以打印出集合里面的内容的,因为集合的父类AbstractCollections
31、不要对超出范围的基本数据类型做向下强制转型
这绝不会得到想要的结果:
public static void main(String[] args) { long l = 12345678901234L; int i = (int)l; System.out.println(i); }
我们可能期望得到其中的某几位,但是结果却是:
1942892530
解释一下。Java中long是8个字节64位的,所以12345678901234在计算机中的表示应该是:
0000 0000 0000 0000 0000 1011 0011 1010 0111 0011 1100 1110 0010 1111 1111 0010
一个int型数据是4个字节32位的,从低位取出上面这串二进制数据的前32位是:
0111 0011 1100 1110 0010 1111 1111 0010
这串二进制表示为十进制1942892530,所以就是我们上面的控制台上输出的内容。从这个例子上还能顺便得到两个结论:
1、整型默认的数据类型是int,long l = 12345678901234L,这个数字已经超出了int的范围了,所以最后有一个L,表示这是一个long型数。顺便,浮点型的默认类型是double,所以定义float的时候要写成”"float f = 3.5f”
2、接下来再写一句”int ii = l + i;”会报错,因为long + int是一个long,不能赋值给int
32、公用的集合类中不使用的数据一定要及时remove掉
如果一个集合类是公用的(也就是说不是方法里面的属性),那么这个集合里面的元素是不会自动释放的,因为始终有引用指向它们。所以,如果公用集合里面的某些数据不使用而不去remove掉它们,那么将会造成这个公用集合不断增大,使得系统有内存泄露的隐患。
33、把一个基本数据类型转为字符串,基本数据类型.toString()是最快的方式、String.valueOf(数据)次之、数据+”"最慢
把一个基本数据类型转为一般有三种方式,我有一个Integer型数据i,可以使用i.toString()、String.valueOf(i)、i+”"三种方式,三种方式的效率如何,看一个测试:
public static void main(String[] args) { int loopTime = 50000; Integer i = 0; long startTime = System.currentTimeMillis(); for (int j = 0; j < loopTime; j++) { String str = String.valueOf(i); } System.out.println("String.valueOf():" + (System.currentTimeMillis() - startTime) + "ms"); startTime = System.currentTimeMillis(); for (int j = 0; j < loopTime; j++) { String str = i.toString(); } System.out.println("Integer.toString():" + (System.currentTimeMillis() - startTime) + "ms"); startTime = System.currentTimeMillis(); for (int j = 0; j < loopTime; j++) { String str = i + ""; } System.out.println("i + \"\":" + (System.currentTimeMillis() - startTime) + "ms"); }
运行结果为:
String.valueOf():11ms Integer.toString():5ms i + "":25ms
所以以后遇到把一个基本数据类型转为String的时候,优先考虑使用toString()方法。至于为什么,很简单:
1、String.valueOf()方法底层调用了Integer.toString()方法,但是会在调用前做空判断
2、Integer.toString()方法就不说了,直接调用了
3、i + “”底层使用了StringBuilder实现,先用append方法拼接,再用toString()方法获取字符串
三者对比下来,明显是2最快、1次之、3最慢
34、使用最有效率的方式去遍历Map
遍历Map的方式有很多,通常场景下我们需要的是遍历Map中的Key和Value,那么推荐使用的、效率最高的方式是:
public static void main(String[] args) { HashMap<String, String> hm = new HashMap<String, String>(); hm.put("111", "222"); Set<Map.Entry<String, String>> entrySet = hm.entrySet(); Iterator<Map.Entry<String, String>> iter = entrySet.iterator(); while (iter.hasNext()) { Map.Entry<String, String> entry = iter.next(); System.out.println(entry.getKey() + "\t" + entry.getValue()); } }
如果你只是想遍历一下这个Map的key值,那用”Set
35、对资源的close()建议分开操作
意思是,比如我有这么一段代码:
try{ XXX.close(); YYY.close(); }catch (Exception e) { ... }
建议修改为:
try{ XXX.close(); }catch (Exception e) { ... }try{ YYY.close(); }catch (Exception e) { ... }
虽然有些麻烦,却能避免资源泄露。我们想,如果没有修改过的代码,万一XXX.close()抛异常了,那么就进入了cath块中了,YYY.close()不会执行,YYY这块资源就不会回收了,一直占用着,这样的代码一多,是可能引起资源句柄泄露的。而改为下面的写法之后,就保证了无论如何XXX和YYY都会被close掉。