


Lösung für das Scrapy-Ausgabefehlerprotokoll in der Win7-Umgebung
Beim Debuggen von Scrapy-Code unter Win7 tritt ein Codefehler auf, der jedoch nicht im Protokoll ausgegeben wird. Stattdessen wird in cmd der folgende Fehler gemeldet:
Traceback (letzter Aufruf zuletzt):
Datei „d :python27liblogging__init__.py“, Zeile 884, in emit
stream.write(fs % msg.encode("UTF-8"))
UnicodeDecodeError: 'gbk' codec can't decode bytes in Position 1274-1275: Unzulässige Multibyte-Sequenz
Geloggt aus der Datei scraper.py, Zeile 158
Verschiedene Versuche schlugen fehl. Später fand ich jemanden im Forum, der sagte, dass dieser Fehler in der Python3-Umgebung nicht existiert. Deshalb habe ich versucht, die Python2.7-Protokollierungskomponente zu aktualisieren.
Shell-Code
pip install --upgrade logging
Nach dem Upgrade der Protokollierung wird dieser Fehler nicht mehr angezeigt.

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





Scrapy implementiert das Crawlen von Artikeln und die Analyse öffentlicher WeChat-Konten. WeChat ist in den letzten Jahren eine beliebte Social-Media-Anwendung, und die darin betriebenen öffentlichen Konten spielen ebenfalls eine sehr wichtige Rolle. Wie wir alle wissen, sind öffentliche WeChat-Konten ein Ozean an Informationen und Wissen, da jedes öffentliche Konto Artikel, grafische Nachrichten und andere Informationen veröffentlichen kann. Diese Informationen können in vielen Bereichen umfassend genutzt werden, beispielsweise in Medienberichten, in der akademischen Forschung usw. In diesem Artikel erfahren Sie, wie Sie das Scrapy-Framework zum Crawlen und Analysieren von WeChat-Artikeln zu öffentlichen Konten verwenden. Scr

Scrapy ist ein Open-Source-Python-Crawler-Framework, das schnell und effizient Daten von Websites abrufen kann. Viele Websites verwenden jedoch die asynchrone Ladetechnologie von Ajax, was es Scrapy unmöglich macht, Daten direkt abzurufen. In diesem Artikel wird die Scrapy-Implementierungsmethode basierend auf dem asynchronen Laden von Ajax vorgestellt. 1. Ajax-Prinzip des asynchronen Ladens Ajax-Asynchronladen: Bei der herkömmlichen Seitenlademethode muss der Browser, nachdem er eine Anfrage an den Server gesendet hat, darauf warten, dass der Server eine Antwort zurückgibt und die gesamte Seite lädt, bevor er mit dem nächsten Schritt fortfährt.

Scrapy ist ein Python-basiertes Crawler-Framework, mit dem schnell und einfach relevante Informationen im Internet abgerufen werden können. In diesem Artikel analysieren wir anhand eines Scrapy-Falls im Detail, wie Unternehmensinformationen auf LinkedIn gecrawlt werden. Bestimmen Sie die Ziel-URL. Zunächst müssen wir klarstellen, dass unser Ziel die Unternehmensinformationen auf LinkedIn sind. Daher müssen wir die URL der LinkedIn-Unternehmensinformationsseite finden. Öffnen Sie die LinkedIn-Website, geben Sie den Firmennamen in das Suchfeld ein und

Scrapy ist ein leistungsstarkes Python-Crawler-Framework, mit dem große Datenmengen aus dem Internet abgerufen werden können. Bei der Entwicklung von Scrapy stoßen wir jedoch häufig auf das Problem, doppelte URLs zu crawlen, was viel Zeit und Ressourcen verschwendet und die Effizienz beeinträchtigt. In diesem Artikel werden einige Scrapy-Optimierungstechniken vorgestellt, um das Crawlen doppelter URLs zu reduzieren und die Effizienz von Scrapy-Crawlern zu verbessern. 1. Verwenden Sie die Attribute „start_urls“ und „allowed_domains“ im Scrapy-Crawler

Verwendung von Selenium und PhantomJS in Scrapy-Crawlern Scrapy ist ein hervorragendes Webcrawler-Framework unter Python und wird häufig bei der Datenerfassung und -verarbeitung in verschiedenen Bereichen eingesetzt. Bei der Implementierung des Crawlers ist es manchmal erforderlich, Browservorgänge zu simulieren, um die von bestimmten Websites präsentierten Inhalte abzurufen. In diesem Fall werden Selenium und PhantomJS benötigt. Selenium simuliert menschliche Vorgänge im Browser und ermöglicht uns so die Automatisierung von Webanwendungstests

Scrapy ist ein leistungsstarkes Python-Crawler-Framework, mit dem wir schnell und flexibel Daten im Internet abrufen können. Beim eigentlichen Crawling-Prozess stoßen wir häufig auf verschiedene Datenformate wie HTML, XML und JSON. In diesem Artikel stellen wir vor, wie man Scrapy zum Crawlen dieser drei Datenformate verwendet. 1. HTML-Daten crawlen und ein Scrapy-Projekt erstellen. Zuerst müssen wir ein Scrapy-Projekt erstellen. Öffnen Sie die Befehlszeile und geben Sie den folgenden Befehl ein: scrapys

Da sich moderne Internetanwendungen ständig weiterentwickeln und immer komplexer werden, sind Webcrawler zu einem wichtigen Werkzeug für die Datenerfassung und -analyse geworden. Als eines der beliebtesten Crawler-Frameworks in Python verfügt Scrapy über leistungsstarke Funktionen und benutzerfreundliche API-Schnittstellen, die Entwicklern dabei helfen können, Webseitendaten schnell zu crawlen und zu verarbeiten. Bei umfangreichen Crawling-Aufgaben wird eine einzelne Scrapy-Crawler-Instanz jedoch leicht durch die Hardwareressourcen eingeschränkt, sodass Scrapy normalerweise in einem Container verpackt und in einem Docker-Container bereitgestellt werden muss.

Mit der Entwicklung des Internets verlassen sich die Menschen zunehmend auf das Internet, um Informationen zu erhalten. Für Buchliebhaber ist Douban Books zu einer unverzichtbaren Plattform geworden. Darüber hinaus bietet Douban Books eine Fülle von Buchbewertungen und Rezensionen, die es den Lesern ermöglichen, ein Buch umfassender zu verstehen. Das manuelle Abrufen dieser Informationen ist jedoch gleichbedeutend mit der Suche nach der Nadel im Heuhaufen. Zu diesem Zeitpunkt können wir das Scrapy-Tool zum Crawlen von Daten verwenden. Scrapy ist ein auf Python basierendes Open-Source-Webcrawler-Framework, das uns effizient helfen kann
