


Ausführliche Erläuterung der JavaScript-Gleitkommazahlen und der Anpassung der Operationsgenauigkeit
JavaScript hat nur einen Zahlentyp, Zahl, und alle Zahlen in Javascript werden im IEEE-754-Standardformat dargestellt. Das Genauigkeitsproblem bei Gleitkommazahlen ist nicht spezifisch für JavaScript, da einige Dezimalzahlen unendlich viele binäre Darstellungsziffern haben.
Binärsystem
0,1 0,0001 1001 1001 1001 …
0,3 0,0100 1100 1100 1100 …
0,4 0,0110 0110 0110 0110 …
0,5 0,1 <.> 0,6 0,1001 1001 1001 1001…
Also 1.1, sein Verfahren kann nicht tatsächlich „1.1“ anzeigen, sondern nur bis zu einem gewissen Grad Genauigkeit. Dies kann keinen Genauigkeitsverlust vermeiden: 1.09999999999999999
Das Problem ist in JavaScript komplizierter. Hier sind nur einige Testdaten in Chrome:
console.log(1.0-0.9 == 0.1) //false console.log(1.0-0.8 == 0.2) //false console.log(1.0-0.7 == 0.3) //false console.log(1.0-0.6 == 0.4) //true console.log(1.0-0.5 == 0.5) //true console.log(1.0-0.4 == 0.6) //true console.log(1.0-0.3 == 0.7) //true console.log(1.0-0.2 == 0.8) //true console.log(1.0-0.1 == 0.9) //true
Wie vermeidet man also solche Nicht-Fehler-Probleme mit 1.0-0.9? = 0,1? Das Folgende ist eine häufig verwendete Lösung, bevor das Ergebnis der Gleitkommaoperation beurteilt wird, da der Präzisionsreduzierungsprozess immer automatisch gerundet wird:
(1.0-0.9).toFixed(digits) // toFixed() 精度参数digits须在0与20之间 console.log(parseFloat((1.0-0.9).toFixed(10)) === 0.1) //true console.log(parseFloat((1.0-0.8).toFixed(10)) === 0.2) //true console.log(parseFloat((1.0-0.7).toFixed(10)) === 0.3) //true console.log(parseFloat((11.0-11.8).toFixed(10)) === -0.8) //true
ist als Methode geschrieben:
🎜>//通过isEqual工具方法判断数值是否相等 function isEqual(number1, number2, digits){ digits = digits == undefined? 10: digits; // 默认精度为10 return number1.toFixed(digits) === number2.toFixed(digits); } console.log(isEqual(1.0-0.7, 0.3)); //true //原型扩展方式,更喜欢面向对象的风格 Number.prototype.isEqual = function(number, digits){ digits = digits == undefined? 10: digits; // 默认精度为10 return this.toFixed(digits) === number.toFixed(digits); } console.log((1.0-0.7).isEqual(0.3)); //true
console.log(1.79+0.12) //1.9100000000000001 console.log(2.01-0.12) //1.8899999999999997 console.log(1.01*1.3) //1.3130000000000002 console.log(0.69/10) //0.06899999999999999
//加法函数,用来得到精确的加法结果 //说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的加法结果。 //调用:accAdd(arg1,arg2) //返回值:arg1加上arg2的精确结果 function accAdd(arg1,arg2){ var r1,r2,m; try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0} try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0} m=Math.pow(10,Math.max(r1,r2)) return (arg1*m+arg2*m)/m } //给Number类型增加一个add方法,调用起来更加方便。 Number.prototype.add = function (arg){ return accAdd(arg,this); } //减法函数,用来得到精确的减法结果 //说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的减法结果。 //调用:accSub(arg1,arg2) //返回值:arg1减去arg2的精确结果 function accSub(arg1,arg2){ var r1,r2,m,n; try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0} try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0} m=Math.pow(10,Math.max(r1,r2)); //last modify by deeka //动态控制精度长度 n=(r1>=r2)?r1:r2; return ((arg1*m-arg2*m)/m).toFixed(n); }
//除法函数,用来得到精确的除法结果 //说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显。这个函数返回较为精确的除法结果。 //调用:accDiv(arg1,arg2) //返回值:arg1除以arg2的精确结果 function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try{t1=arg1.toString().split(".")[1].length}catch(e){} try{t2=arg2.toString().split(".")[1].length}catch(e){} with(Math){ r1=Number(arg1.toString().replace(".","")) r2=Number(arg2.toString().replace(".","")) return (r1/r2)*pow(10,t2-t1); } } //给Number类型增加一个div方法,调用起来更加方便。 Number.prototype.div = function (arg){ return accDiv(this, arg); } //乘法函数,用来得到精确的乘法结果 //说明:javascript的乘法结果会有误差,在两个浮点数相乘的时候会比较明显。这个函数返回较为精确的乘法结果。 //调用:accMul(arg1,arg2) //返回值:arg1乘以arg2的精确结果 function accMul(arg1,arg2) { var m=0,s1=arg1.toString(),s2=arg2.toString(); try{m+=s1.split(".")[1].length}catch(e){} try{m+=s2.split(".")[1].length}catch(e){} return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,m) } //给Number类型增加一个mul方法,调用起来更加方便。 Number.prototype.mul = function (arg){ return accMul(arg, this); } <br>//验证一下: console.log(accAdd(1.79, 0.12)); //1.91 console.log(accSub(2.01, 0.12)); //1.89 console.log(accDiv(0.69, 10)); //0.069<br>console.log(accMul(1.01, 1.3)); //1.313

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

So implementieren Sie mit WebSocket und JavaScript ein Online-Spracherkennungssystem. Einführung: Mit der kontinuierlichen Weiterentwicklung der Technologie ist die Spracherkennungstechnologie zu einem wichtigen Bestandteil des Bereichs der künstlichen Intelligenz geworden. Das auf WebSocket und JavaScript basierende Online-Spracherkennungssystem zeichnet sich durch geringe Latenz, Echtzeit und plattformübergreifende Eigenschaften aus und hat sich zu einer weit verbreiteten Lösung entwickelt. In diesem Artikel wird erläutert, wie Sie mit WebSocket und JavaScript ein Online-Spracherkennungssystem implementieren.

WebSocket und JavaScript: Schlüsseltechnologien zur Realisierung von Echtzeit-Überwachungssystemen Einführung: Mit der rasanten Entwicklung der Internet-Technologie wurden Echtzeit-Überwachungssysteme in verschiedenen Bereichen weit verbreitet eingesetzt. Eine der Schlüsseltechnologien zur Erzielung einer Echtzeitüberwachung ist die Kombination von WebSocket und JavaScript. In diesem Artikel wird die Anwendung von WebSocket und JavaScript in Echtzeitüberwachungssystemen vorgestellt, Codebeispiele gegeben und deren Implementierungsprinzipien ausführlich erläutert. 1. WebSocket-Technologie

Einführung in die Verwendung von JavaScript und WebSocket zur Implementierung eines Online-Bestellsystems in Echtzeit: Mit der Popularität des Internets und dem Fortschritt der Technologie haben immer mehr Restaurants damit begonnen, Online-Bestelldienste anzubieten. Um ein Echtzeit-Online-Bestellsystem zu implementieren, können wir JavaScript und WebSocket-Technologie verwenden. WebSocket ist ein Vollduplex-Kommunikationsprotokoll, das auf dem TCP-Protokoll basiert und eine bidirektionale Kommunikation zwischen Client und Server in Echtzeit realisieren kann. Im Echtzeit-Online-Bestellsystem, wenn der Benutzer Gerichte auswählt und eine Bestellung aufgibt

So implementieren Sie ein Online-Reservierungssystem mit WebSocket und JavaScript. Im heutigen digitalen Zeitalter müssen immer mehr Unternehmen und Dienste Online-Reservierungsfunktionen bereitstellen. Es ist von entscheidender Bedeutung, ein effizientes Online-Reservierungssystem in Echtzeit zu implementieren. In diesem Artikel wird erläutert, wie Sie mit WebSocket und JavaScript ein Online-Reservierungssystem implementieren, und es werden spezifische Codebeispiele bereitgestellt. 1. Was ist WebSocket? WebSocket ist eine Vollduplex-Methode für eine einzelne TCP-Verbindung.

JavaScript und WebSocket: Aufbau eines effizienten Echtzeit-Wettervorhersagesystems Einführung: Heutzutage ist die Genauigkeit von Wettervorhersagen für das tägliche Leben und die Entscheidungsfindung von großer Bedeutung. Mit der Weiterentwicklung der Technologie können wir genauere und zuverlässigere Wettervorhersagen liefern, indem wir Wetterdaten in Echtzeit erhalten. In diesem Artikel erfahren Sie, wie Sie mit JavaScript und WebSocket-Technologie ein effizientes Echtzeit-Wettervorhersagesystem aufbauen. In diesem Artikel wird der Implementierungsprozess anhand spezifischer Codebeispiele demonstriert. Wir

JavaScript-Tutorial: So erhalten Sie HTTP-Statuscode. Es sind spezifische Codebeispiele erforderlich. Vorwort: Bei der Webentwicklung ist häufig die Dateninteraktion mit dem Server erforderlich. Bei der Kommunikation mit dem Server müssen wir häufig den zurückgegebenen HTTP-Statuscode abrufen, um festzustellen, ob der Vorgang erfolgreich ist, und die entsprechende Verarbeitung basierend auf verschiedenen Statuscodes durchführen. In diesem Artikel erfahren Sie, wie Sie mit JavaScript HTTP-Statuscodes abrufen und einige praktische Codebeispiele bereitstellen. Verwenden von XMLHttpRequest

Verwendung: In JavaScript wird die Methode insertBefore() verwendet, um einen neuen Knoten in den DOM-Baum einzufügen. Diese Methode erfordert zwei Parameter: den neuen Knoten, der eingefügt werden soll, und den Referenzknoten (d. h. den Knoten, an dem der neue Knoten eingefügt wird).

JavaScript ist eine in der Webentwicklung weit verbreitete Programmiersprache, während WebSocket ein Netzwerkprotokoll für die Echtzeitkommunikation ist. Durch die Kombination der leistungsstarken Funktionen beider können wir ein effizientes Echtzeit-Bildverarbeitungssystem erstellen. In diesem Artikel wird erläutert, wie dieses System mithilfe von JavaScript und WebSocket implementiert wird, und es werden spezifische Codebeispiele bereitgestellt. Zunächst müssen wir die Anforderungen und Ziele des Echtzeit-Bildverarbeitungssystems klären. Angenommen, wir haben ein Kameragerät, das Bilddaten in Echtzeit sammeln kann
