Heim Backend-Entwicklung Python-Tutorial Ein umfassendes Verständnis von Multithreading in Python. Eine Pflichtlektüre für Neulinge

Ein umfassendes Verständnis von Multithreading in Python. Eine Pflichtlektüre für Neulinge

Dec 14, 2016 pm 05:52 PM

Beispiel 1
Wir werden fünf verschiedene URLs anfordern:
Single-Threaded

import time
import urllib2
   
defget_responses():
  urls=[
    ‘http://www.baidu.com',
    ‘http://www.amazon.com',
    ‘http://www.ebay.com',
    ‘http://www.alibaba.com',
    ‘http://www.jb51.net'
  ]
  start=time.time()
  forurlinurls:
    printurl
    resp=urllib2.urlopen(url)
    printresp.getcode()
  print”Elapsed time: %s”%(time.time()-start)
   
get_responses()
Nach dem Login kopieren

Die Ausgabe ist:
http://www .baidu .com200
http://www.amazon.com200
http://www.ebay.com200
http://www.alibaba.com200
http://www.jb51 .net200
Abgelaufen Zeit: 3.0814409256

Erklärung:
URLs werden der Reihe nach angefordert
Solange die CPU keine Antwort von einer URL erhält, fordert sie nicht die nächste URL an
Netzwerkanfragen werden lange dauern, Die CPU war also im Leerlauf und wartete auf die Rückkehr der Netzwerkanforderung.
Multithreading

import urllib2
import time
from threading import Thread
   
classGetUrlThread(Thread):
  def__init__(self, url):
    self.url=url
    super(GetUrlThread,self).__init__()
   
  defrun(self):
    resp=urllib2.urlopen(self.url)
    printself.url, resp.getcode()
   
defget_responses():
  urls=[
    ‘http://www.baidu.com',
    ‘http://www.amazon.com',
    ‘http://www.ebay.com',
    ‘http://www.alibaba.com',
    ‘http://www.jb51.net'
  ]
  start=time.time()
  threads=[]
  forurlinurls:
    t=GetUrlThread(url)
    threads.append(t)
    t.start()
  fortinthreads:
    t.join()
  print”Elapsed time: %s”%(time.time()-start)
   
get_responses()
Nach dem Login kopieren

Ausgabe:
http://www.jb51.net200
http://www.baidu.com200
http ://www.amazon.com200
http://www.alibaba.com200
http://www.ebay.com200
Abgelaufen Zeit: 0,689890861511

Erklärung:

Wir sind uns der Verbesserung der Ausführungszeit des Programms bewusst
Wir haben ein Multithread-Programm geschrieben, um die Wartezeit der CPU zu verkürzen für einen Thread Wenn die Netzwerkanforderung zurückkehrt, kann die CPU zu anderen Threads wechseln, um Netzwerkanforderungen in anderen Threads auszuführen.
Wir erwarten, dass ein Thread eine URL verarbeitet, daher übergeben wir beim Instanziieren der Thread-Klasse eine URL.
Thread-Ausführung bedeutet, dass die run()-Methode in der Klasse ausgeführt wird.
Auf jeden Fall möchten wir, dass jeder Thread run() ausführt.
Erstellen Sie für jede URL einen Thread und rufen Sie die start()-Methode auf, die die CPU anweist, die run()-Methode im Thread auszuführen.
Wir hoffen, die aufgewendete Zeit berechnen zu können, wenn die Ausführung aller Threads abgeschlossen ist, und rufen daher die Methode „join()“ auf.
join() kann den Hauptthread benachrichtigen, auf das Ende dieses Threads zu warten, bevor die nächste Anweisung ausgeführt wird.
Wir rufen die Methode „join()“ für jeden Thread auf, sodass wir die Laufzeit berechnen, nachdem alle Threads die Ausführung abgeschlossen haben.

Über Threads:

Die CPU führt die run()-Methode möglicherweise nicht sofort nach dem Aufruf von start() aus.
Sie können die Ausführungsreihenfolge von run() zwischen verschiedenen Threads nicht bestimmen.
Für einen einzelnen Thread wird garantiert, dass die Anweisungen in der run()-Methode der Reihe nach ausgeführt werden.
Das liegt daran, dass zuerst die URL im Thread abgefragt wird und dann das zurückgegebene Ergebnis ausgedruckt wird.

Beispiel 2

Wir werden ein Programm verwenden, um den Ressourcenwettbewerb zwischen Multithreads zu demonstrieren und dieses Problem zu beheben.

from threading import Thread
   
#define a global variable
some_var=0
   
classIncrementThread(Thread):
  defrun(self):
    #we want to read a global variable
    #and then increment it
    globalsome_var
    read_value=some_var
    print”some_var in %s is %d”%(self.name, read_value)
    some_var=read_value+1
    print”some_var in %s after increment is %d”%(self.name, some_var)
   
defuse_increment_thread():
  threads=[]
  foriinrange(50):
    t=IncrementThread()
    threads.append(t)
    t.start()
  fortinthreads:
    t.join()
  print”After 50 modifications, some_var should have become 50″
  print”After 50 modifications, some_var is %d”%(some_var,)
   
use_increment_thread()
Nach dem Login kopieren

Führen Sie dieses Programm mehrmals aus und Sie werden eine Vielzahl unterschiedlicher Ergebnisse sehen.
Erklärung:
Es gibt eine globale Variable und alle Threads möchten sie ändern.
Alle Threads sollten diese globale Variable hinzufügen 1 .
Bei 50 Threads sollte der Endwert 50 werden, was aber nicht der Fall ist.
Warum hat es nicht 50 erreicht?
Wenn some_var 15 ist, liest Thread t1 some_var. Zu diesem Zeitpunkt übergibt die CPU die Kontrolle an einen anderen Thread t2.
Die vom t2-Thread gelesene some_var ist ebenfalls 15
Sowohl t1 als auch t2 erhöhen some_var auf 16
Was wir damals erwartet hatten, war t1 t2 zwei Threads machen some_var + Aus 2 wird 17
Hier herrscht Konkurrenz um Ressourcen.
Die gleiche Situation kann auch in anderen Threads auftreten, sodass das Endergebnis möglicherweise weniger als 50 beträgt.
Ressourcenkonkurrenz auflösen

from threading import Lock, Thread
lock=Lock()
some_var=0
   
classIncrementThread(Thread):
  defrun(self):
    #we want to read a global variable
    #and then increment it
    globalsome_var
    lock.acquire()
    read_value=some_var
    print”some_var in %s is %d”%(self.name, read_value)
    some_var=read_value+1
    print”some_var in %s after increment is %d”%(self.name, some_var)
    lock.release()
   
defuse_increment_thread():
  threads=[]
  foriinrange(50):
    t=IncrementThread()
    threads.append(t)
    t.start()
  fortinthreads:
    t.join()
  print”After 50 modifications, some_var should have become 50″
  print”After 50 modifications, some_var is %d”%(some_var,)
   
use_increment_thread()
Nach dem Login kopieren

Führen Sie dieses Programm erneut aus und erzielen Sie die erwarteten Ergebnisse.
Erklärung:
Sperre Wird verwendet, um Race-Bedingungen zu verhindern
Wenn Thread t1 die Sperre erhält, bevor er einige Vorgänge ausführt. Andere Threads führen den gleichen Vorgang nicht aus, bevor t1 die Sperre aufhebt
Wir möchten sicherstellen, dass, sobald Thread t1 some_var gelesen hat, andere Threads some_var nicht lesen können, bis t1 die Änderung von some_var abgeschlossen hat
Auf diese Weise lesen und das Ändern von some_var wird zu einer logischen atomaren Operation.
Beispiel 3
Lassen Sie uns anhand eines Beispiels beweisen, dass ein Thread keine Variablen (nicht globale Variablen) in anderen Threads beeinflussen kann.
time.sleep() kann einen Thread anhalten und einen Threadwechsel erzwingen.

from threading import Thread
import time
   
classCreateListThread(Thread):
  defrun(self):
    self.entries=[]
    foriinrange(10):
      time.sleep(1)
      self.entries.append(i)
    printself.entries
   
defuse_create_list_thread():
  foriinrange(3):
    t=CreateListThread()
    t.start()
   
use_create_list_thread()
Nach dem Login kopieren

Nach mehrmaligem Ausführen stellte ich fest, dass das gewünschte Ergebnis nicht ausgedruckt wurde. Während ein Thread druckt, wechselt die CPU zu einem anderen Thread, sodass falsche Ergebnisse erzeugt werden. Wir müssen sicherstellen, dass gedruckt wird self.entries ist eine logische atomare Operation, um zu verhindern, dass der Druckvorgang durch andere Threads unterbrochen wird.
Wir haben Lock() verwendet, sehen Sie sich das Beispiel unten an.

from threading import Thread, Lock
import time
   
lock=Lock()
   
classCreateListThread(Thread):
  defrun(self):
    self.entries=[]
    foriinrange(10):
      time.sleep(1)
      self.entries.append(i)
    lock.acquire()
    printself.entries
    lock.release()
   
defuse_create_list_thread():
  foriinrange(3):
    t=CreateListThread()
    t.start()
   
use_create_list_thread()
Nach dem Login kopieren

Diesmal haben wir das richtige Ergebnis gesehen. Es beweist, dass ein Thread die internen Variablen (nicht globale Variablen) anderer Threads nicht ändern kann.

Das Obige ist Multithreading in Python. Weitere verwandte Artikel finden Sie auf der chinesischen PHP-Website (www.php.cn)!


Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden Mar 05, 2025 am 09:58 AM

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Bildfilterung in Python Bildfilterung in Python Mar 03, 2025 am 09:44 AM

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Wie man mit PDF -Dokumenten mit Python arbeitet Wie man mit PDF -Dokumenten mit Python arbeitet Mar 02, 2025 am 09:54 AM

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Mar 02, 2025 am 10:10 AM

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Einführung in die parallele und gleichzeitige Programmierung in Python Einführung in die parallele und gleichzeitige Programmierung in Python Mar 03, 2025 am 10:32 AM

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

So implementieren Sie Ihre eigene Datenstruktur in Python So implementieren Sie Ihre eigene Datenstruktur in Python Mar 03, 2025 am 09:28 AM

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

See all articles