Vorwort
Pandas ist ein auf Numpy basierendes Datenanalysepaket, das erweiterte Datenstrukturen und Tools enthält. Ähnlich wie Numpy, dessen Kern ndarray ist, dreht sich bei Pandas auch die beiden Kerndatenstrukturen Series und Datenrahmen. Serien und DataFrame entsprechen einer eindimensionalen Sequenz bzw. einer zweidimensionalen Tabellenstruktur. Die herkömmliche Importmethode von Pandas ist wie folgt:
from pandas import Series,DataFrame import pandas as pd
1.1. Pandas-Analyseschritte
1. Protokolldaten laden
2. Area_IP-Daten laden
3. Zählen Sie die Anzahl der real_ip-Anfragen. Ähnlich dem folgenden SQL:
SELECT inet_aton(l.real_ip), count(*), a.addr FROM log AS l INNER JOIN area_ip AS a ON a.start_ip_num <= inet_aton(l.real_ip) AND a.end_ip_num >= inet_aton(l.real_ip) GROUP BY real_ip ORDER BY count(*) LIMIT 0, 100;
1.2. Code
cat pd_ng_log_stat.py #!/usr/bin/env python #-*- coding: utf-8 -*- from ng_line_parser import NgLineParser import pandas as pd import socket import struct class PDNgLogStat(object): def __init__(self): self.ng_line_parser = NgLineParser() def _log_line_iter(self, pathes): """解析文件中的每一行并生成一个迭代器""" for path in pathes: with open(path, 'r') as f: for index, line in enumerate(f): self.ng_line_parser.parse(line) yield self.ng_line_parser.to_dict() def _ip2num(self, ip): """用于IP转化为数字""" ip_num = -1 try: # 将IP转化成INT/LONG 数字 ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0]) except: pass finally: return ip_num def _get_addr_by_ip(self, ip): """通过给的IP获得地址""" ip_num = self._ip2num(ip) try: addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) & (ip_num <= self.ip_addr_df.ip_end_num)] addr = addr_df.at[addr_df.index.tolist()[0], 'addr'] return addr except: return None def load_data(self, path): """通过给的文件路径加载数据生成 DataFrame""" self.df = pd.DataFrame(self._log_line_iter(path)) def uv_real_ip(self, top = 100): """统计cdn ip量""" group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列 # 直接统计次数 url_req_grp = self.df[group_by_cols].groupby( self.df['real_ip']) return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count') def uv_real_ip_addr(self, top = 100): """统计real ip 地址量""" cnt_df = self.uv_real_ip(top) # 添加 ip 地址 列 cnt_df.insert(len(cnt_df.columns), 'addr', cnt_df.index.map(self._get_addr_by_ip)) return cnt_df def load_ip_addr(self, path): """加载IP""" cols = ['id', 'ip_start_num', 'ip_end_num', 'ip_start', 'ip_end', 'addr', 'operator'] self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id') return self.ip_addr_df def main(): file_pathes = ['www.ttmark.com.access.log'] pd_ng_log_stat = PDNgLogStat() pd_ng_log_stat.load_data(file_pathes) # 加载 ip 地址 area_ip_path = 'area_ip.csv' pd_ng_log_stat.load_ip_addr(area_ip_path) # 统计 用户真实 IP 访问量 和 地址 print pd_ng_log_stat.uv_real_ip_addr() if __name__ == '__main__': main()
Laufstatistiken und Ausgabeergebnisse
python pd_ng_log_stat.py count addr real_ip 60.191.123.80 101013 浙江省杭州市 - 32691 None 218.30.118.79 22523 北京市 ...... 136.243.152.18 889 德国 157.55.39.219 889 美国 66.249.65.170 888 美国 [100 rows x 2 columns]
Zusammenfassung
Das Obige ist der gesamte Inhalt dieses Artikels. Ich hoffe, dass der Inhalt dieses Artikels einige Vorteile bringt Helfen Sie jedem beim Lernen oder Arbeiten. Wenn Sie Fragen haben, können Sie eine Nachricht hinterlassen.
Ausführlichere Erläuterungen zu echten IP-Anfrage-Pandas für die Python-Datenanalyse und verwandte Artikel finden Sie auf der chinesischen PHP-Website!
Verwandte Artikel:
So verwenden Sie Pandas, um CSV-Dateien zu lesen und sie mit Python in MySQL zu schreiben
Cdn-Protokolle über die Pandas Bibliothek in Python Detaillierte Analyse
Tutorial zur Verwendung des Pandas-Frameworks von Python zum Bearbeiten von Daten in Excel-Dateien