Implementierungsmethode der Softmax-Regressionsfunktion unter Python

高洛峰
Freigeben: 2017-02-03 16:49:58
Original
2349 Leute haben es durchsucht

Die Softmax-Regressionsfunktion wird verwendet, um die Klassifizierungsergebnisse zu normalisieren. Es unterscheidet sich jedoch von der allgemeinen Normalisierungsmethode entsprechend der Proportionen. Die Normalisierung erfolgt durch logarithmische Transformation, sodass größere Werte während des Normalisierungsprozesses stärker zunehmen.

Softmax-Formel

Implementierungsmethode der Softmax-Regressionsfunktion unter Python

Softmax-Implementierungsmethode 1

import numpy as np
def softmax(x):
 """Compute softmax values for each sets of scores in x."""
 pass # TODO: Compute and return softmax(x)
 x = np.array(x)
 x = np.exp(x)
 x.astype('float32')
 if x.ndim == 1:
  sumcol = sum(x)
  for i in range(x.size):
   x[i] = x[i]/float(sumcol)
 if x.ndim > 1:
  sumcol = x.sum(axis = 0)
  for row in x:
   for i in range(row.size):
    row[i] = row[i]/float(sumcol[i])
 return x
#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)
Nach dem Login kopieren

seine Berechnung Die Ergebnisse sind wie folgt:

[ 0.8360188 0.11314284 0.05083836]
Nach dem Login kopieren

Softmax-Implementierungsmethode 2

import numpy as np
def softmax(x):
 return np.exp(x)/np.sum(np.exp(x),axis=0)
 
#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)
Nach dem Login kopieren

Die obige Implementierungsmethode der Softmax-Regressionsfunktion unter Python (empfohlen) ist der gesamte vom Herausgeber geteilte Inhalt. Ich hoffe, dass er Ihnen eine Referenz geben kann, und ich hoffe auch, dass Sie die chinesische PHP-Website unterstützen.

Weitere verwandte Artikel zur Implementierung der Softmax-Regressionsfunktion unter Python finden Sie auf der chinesischen PHP-Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage