Es ist keine Übertreibung zu sagen, dass Big Data zu einem unverzichtbaren Bestandteil jeder Geschäftskommunikation geworden ist. Desktop- und mobile Suchen liefern Daten in einem beispiellosen Ausmaß an Vermarkter und Unternehmen auf der ganzen Welt, und mit dem Aufkommen des Internets der Dinge wird die Menge der für den Konsum verfügbaren Daten exponentiell wachsen. Diese Verbrauchsdaten sind eine Goldgrube für Unternehmen, die ihre Kunden besser ansprechen, verstehen, wie Menschen ihre Produkte oder Dienstleistungen nutzen, und Informationen sammeln möchten, um ihre Gewinne zu steigern.
Die Aufgabe, die Daten zu sichten und Ergebnisse zu finden, die Unternehmen tatsächlich nutzen können, liegt bei Softwareentwicklern, Datenwissenschaftlern und Statistikern. Es gibt viele Tools zur Unterstützung der Big-Data-Analyse, das beliebteste ist jedoch Python.
Warum Python wählen?
Der größte Vorteil von Python ist, dass es einfach und benutzerfreundlich ist. Die Sprache verfügt über eine intuitive Syntax und ist eine leistungsstarke Mehrzwecksprache. Dies ist in einer Big-Data-Analyseumgebung wichtig, und viele Unternehmen verwenden Python bereits intern, beispielsweise Google, YouTube, Disney und Sony DreamWorks. Außerdem ist Python Open Source und verfügt über viele Bibliotheken für die Datenwissenschaft. Daher benötigt der Big-Data-Markt dringend Python-Entwickler. Auch Experten, die keine Python-Entwickler sind, können diese Sprache mit beträchtlicher Geschwindigkeit erlernen und so den Zeitaufwand für die Datenanalyse maximieren und den Zeitaufwand für das Erlernen dieser Sprache minimieren.
Bevor Sie Python für die Datenanalyse verwenden, müssen Sie Anaconda von Continuum.io herunterladen. Dieses Paket enthält alles, was Sie für die Datenwissenschaft in Python benötigen. Der Nachteil besteht darin, dass Herunterladen und Aktualisieren als Einheit erfolgen, sodass die Aktualisierung einer einzelnen Bibliothek zeitaufwändig ist. Aber es lohnt sich, schließlich gibt es Ihnen alle Werkzeuge, die Sie brauchen, damit Sie sich nicht abmühen müssen.
Wenn Sie Python wirklich für die Big-Data-Analyse verwenden möchten, müssen Sie zweifellos Python-Entwickler werden. Das bedeutet nicht, dass Sie die Sprache beherrschen müssen, aber Sie müssen die Syntax von Python kennen, reguläre Ausdrücke verstehen und wissen, was Tupel, Strings, Wörterbücher, Wörterbuchverständnisse, Listen und Listenverständnisse sind – das ist erst der Anfang.
Verschiedene Klassenbibliotheken
Nachdem Sie die Grundkenntnisse von Python beherrschen, müssen Sie verstehen, wie und welche Klassenbibliotheken für Datenwissenschaft funktionieren, was Sie brauchen. Zu den Highlights zählen NumPy, eine Basisbibliothek für fortgeschrittene mathematische Operationen, SciPy, eine solide Bibliothek mit Schwerpunkt auf Werkzeugen und Algorithmen, Sci-kit-learn für maschinelles Lernen und Pandas, eine Funktionssuite zur Bearbeitung von DataFrames-Tools.
Zusätzlich zu den Klassenbibliotheken müssen Sie auch wissen, dass Python nicht über eine anerkannte beste integrierte Entwicklungsumgebung (IDE) verfügt, und das Gleiche gilt für die R-Sprache. Sie müssen also selbst verschiedene IDEs ausprobieren, um herauszufinden, welche Ihren Anforderungen besser entspricht. Für den Einstieg werden IPython Notebook, Rodeo und Spyder empfohlen. Wie verschiedene IDEs bietet auch Python verschiedene Datenvisualisierungsbibliotheken wie Pygal, Bokeh und Seaborn. Das wichtigste dieser Datenvisualisierungstools ist Matplotlib, eine einfache und effektive numerische Zeichenbibliothek.
Alle diese Bibliotheken sind in Anaconda enthalten, sodass Sie nach dem Herunterladen recherchieren können, welche Kombination von Tools Ihren Anforderungen besser entspricht. Bei der Datenanalyse mit Python können Sie viele Fehler machen, seien Sie also vorsichtig. Sobald Sie mit dem Installationsaufbau und den einzelnen Tools vertraut sind, werden Sie feststellen, dass Python eine der besten Plattformen für Big-Data-Analysen auf dem Markt ist.
Englischer Originaltext: http://www.devx.com/dbzone/using-python-for-big-data-analysis.html
Übersetzer: ♂GHOST NINJA⊕
Das Obige ist der Inhalt der Verwendung von Python für die Big-Data-Analyse. Weitere verwandte Inhalte finden Sie auf der chinesischen PHP-Website (www.php.cn)!