Heim > Web-Frontend > H5-Tutorial > Hauptteil

如何用程序解图片迷宫?

PHP中文网
Freigeben: 2016-05-17 09:08:05
Original
2309 Leute haben es durchsucht

 英文原文:Representing and solving a maze given an image

  译注:原文是 StackOverflow 上一个如何用程序读取迷宫图片并求解的问题,几位参与者热烈地讨论并给出了自己的代码,涉及到用 Python 对图片的处理以及广度优先(BFS)算法等。

  问题 by Whymarrh:

1116.jpg

       当给定上面那样一张 JPEG 图片,如何才能更好地将这张图转换为合适的数据结构并且解出这个迷宫?

  我的第一直觉是将这张图按像素逐个读入,并存储在一个包含布尔类型元素的列表或数组中,其中 True 代表白色像素,False 代表非白色像素(或彩色可以被处理成二值图像)。但是这种做法存在一个问题,那就是给定的图片往往并不能完美的“像素化”。考虑到如果因为图片转换的原因,某个非预期的白色像素出现在迷宫的墙上,那么就可能会创造出一一条非预期的路径。

  经过思考之后,我想出了另一种方法:首先将图片转换为一个可缩放适量图形(SVG)文件,这个文件由一个画布上的矢量线条列表组成,矢量线条按照列表的顺序读取,读取出的仍是布尔值:其中 True 表示墙,而 False 表示可通过的区域。但是这种方法如果无法保证图像能够做到百分之百的精确转换,尤其是如果不能将墙完全准确的连接,那么这个迷宫就可能出现裂缝。

  图像转换为 SVG 的另一个问题是,线条并不是完美的直线。因为 SVG 的线条是三次贝塞尔曲线,而使用整数索引的布尔值列表增加了曲线转换的难度,迷宫线条上的所有点在曲线上都必须经过计算,但不一定能够完美对应列表中的索引值。

  假设以上方法的确可以实现(虽然很可能都不行),但当给定一张很大的图像时,它们还是不能胜任。那么是否存在一种更好地方法能够平衡效率和复杂度?

  这就要讨论到如何解迷宫了。如果我使用以上两种方法中的任意一种,我最终将会得到一个矩阵。而根据这个问答(http://stackoverflow.com/questions/3097556/programming-theory-solve-a-maze/3097677#3097677),一个比较好的迷宫表示方式应该是使用树的结构,并且使用A*搜索算法来解迷宫。那么如何从迷宫图片中构造出迷宫树呢?有比较好的方法么?

  以上废话太多,总结起来问题就是:如何转换迷宫图片?转换成为什么样的数据结构?采用什么样的数据结构能够帮助或阻碍解迷宫?

  回答 by Mikhail:

  这是我的解决方案:

  1. 将图片转换为灰度图像(不是直接二值),调整不同颜色的权重使得最终的灰度看起来比较统一,你可以通过简单地调节 Photoshop 图像->调整->黑白菜单中的控制条来实现。

  2. 将上一步得到的灰度图片转换为二值图片,可以通过在 PS 图像->调整->阈值菜单中设定适当的阈值来实现

  3. 确保正确设置了阈值。使用魔棒工具(参数设置:容差 0、取样点、连续以及消除锯齿)选择空白区域,检查所选区域的边缘不是因为错误的阈值设置而产生的假边缘。事实上,这个迷宫中从 start 到 end 应该由联通的空白区域。

  4. 人为地在迷宫外部加上边界,确保迷宫漫游者^_^不会从 start 绕着迷宫跑到终点。:)

  5. 选择语言实现广度优先搜索算法(BFS),从 start 处开始让程序运行。下面的代码我选择用 Matlab 实现。正如 Thomas 提到的,没必要纠结于图像的表示形式,你可以直接在二值图像上运行。

  以下是用 MATLAB 实现的 BFS 代码:

function path = solve_maze(img_file)
  %% Init data
  img = imread(img_file);
  img = rgb2gray(img);
  maze = img > 0;
  start = [985 398];
  finish = [26 399];

  %% Init BFS
  n = numel(maze);
  Q = zeros(n, 2);
  M = zeros([size(maze) 2]);
  front = 0;
  back = 1;

  function push(p, d)
    q = p + d;
    if maze(q(1), q(2)) && M(q(1), q(2), 1) == 0
      front = front + 1;
      Q(front, :) = q;
      M(q(1), q(2), :) = reshape(p, [1 1 2]);
    end
  end

  push(start, [0 0]);

  d = [0 1; 0 -1; 1 0; -1 0];

  %% Run BFS
  while back <= front
    p = Q(back, :);
    back = back + 1;
    for i = 1:4
      push(p, d(i, :));
    end
  end

  %% Extracting path
  path = finish;
  while true
    q = path(end, :);
    p = reshape(M(q(1), q(2), :), 1, 2);
    path(end + 1, :) = p;
    if isequal(p, start) 
      break;
    end
  end
end
Nach dem Login kopieren


这是个简单的实现,应该很容易就能够改写为 Python 或其他语言,下面是程序的运行结果:

1117.jpg

提问者更新:

  我用 Python 实现了一下 Mikhail 的方法,其中用到了 numpy 库,感谢 Thomas 推荐。我感觉这个算法是正确的,但是效果不太如预期,以下是相关代码,使用了 PyPNG 库处理图片。

  译注:很遗憾,我用提问者提供的代码并没有跑通程序,并且似乎代码缩进有点问题,而下面其他参与者的代码能够执行通过,并且效果很好。

import png, numpy, Queue, operator, itertools

def is_white(coord, image):
  """ Returns whether (x, y) is approx. a white pixel."""
  a = True
  for i in xrange(3):
    if not a: break
    a = image[coord[1]][coord[0] * 3 + i] > 240
  return a

def bfs(s, e, i, visited):
  """ Perform a breadth-first search. """
  frontier = Queue.Queue()
  while s != e:
    for d in [(-1, 0), (0, -1), (1, 0), (0, 1)]:
      np = tuple(map(operator.add, s, d))
      if is_white(np, i) and np not in visited:
        frontier.put(np)
    visited.append(s)
    s = frontier.get()
  return visited

def main():
  r = png.Reader(filename = "thescope-134.png")
  rows, cols, pixels, meta = r.asDirect()
  assert meta['planes'] == 3 # ensure the file is RGB
  image2d = numpy.vstack(itertools.imap(numpy.uint8, pixels))
  start, end = (402, 985), (398, 27)
  print bfs(start, end, image2d, [])
Nach dem Login kopieren

 回答 by Joseph Kern:

#!/usr/bin/env python

import sys

from Queue import Queue
from PIL import Image

start = (400,984)
end = (398,25)

def iswhite(value):
    if value == (255,255,255):
    return True

def getadjacent(n):
    x,y = n
    return [(x-1,y),(x,y-1),(x+1,y),(x,y+1)]

def BFS(start, end, pixels):

    queue = Queue()
    queue.put([start]) # Wrapping the start tuple in a list

    while not queue.empty():

        path = queue.get() 
        pixel = path[-1]

        if pixel == end:
            return path

        for adjacent in getadjacent(pixel):
            x,y = adjacent
            if iswhite(pixels[x,y]):
                pixels[x,y] = (127,127,127) # see note
                new_path = list(path)
                new_path.append(adjacent)
                queue.put(new_path)

    print "Queue has been exhausted. No answer was found."

if __name__ == '__main__':

    # invoke: python mazesolver.py  [.jpg|.png|etc.]
    base_img = Image.open(sys.argv[1])
    base_pixels = base_img.load()

    path = BFS(start, end, base_pixels)

    path_img = Image.open(sys.argv[1])
    path_pixels = path_img.load()

    for position in path:
        x,y = position
        path_pixels[x,y] = (255,0,0) # red

    path_img.save(sys.argv[2])
Nach dem Login kopieren


动态执行效果:

回答 by Jim

  使用树搜索太繁杂了,迷宫本身就跟解路径是可分的。正因如此,你可以使用连通区域查找算法来标记迷宫中的连通区域,这将迭代搜索两次这些像素点。如果你想要更好地解决方法,你可以对结构单元使用二元运算(binary operations)来填充每个连通区域中的死路。

  下面是相关的 MATLAB 代码及运行结果:

% read in and invert the image
im = 255 - imread('maze.jpg');

% sharpen it to address small fuzzy channels
% threshold to binary 15%
% run connected components
result = bwlabel(im2bw(imfilter(im,fspecial('unsharp')),0.15));

% purge small components (e.g. letters)
for i = 1:max(reshape(result,1,1002*800))
    [count,~] = size(find(result==i));
    if count < 500
        result(result==i) = 0;
    end
end

% close dead-end channels
closed = zeros(1002,800);
for i = 1:max(reshape(result,1,1002*800))
    k = zeros(1002,800);
    k(result==i) = 1; k = imclose(k,strel('square',8));
    closed(k==1) = i;
end

% do output
out = 255 - im;
for x = 1:1002
    for y = 1:800
        if closed(x,y) == 0
            out(x,y,:) = 0;
        end
    end
end
imshow(out);
Nach dem Login kopieren

1118.jpg

回答 by Stefano

  stefano 童鞋给出了生成搜索过程 GIF 及 AVI 文件的代码 maze-solver-python (GitHub)

以上就是如何用程序解图片迷宫的内容,更多相关内容请关注PHP中文网(www.php.cn)!


Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage