


Python-Anweisungen zum Lesen und Schreiben von JSON-Dateien
JSON (JavaScript Object Notation) ist ein leichtes Datenaustauschformat. Es basiert auf einer Teilmenge von ECMAScript. JSON verwendet ein völlig sprachunabhängiges Textformat, verwendet aber auch Konventionen ähnlich der C-Sprachfamilie (einschließlich C, C++, Java, JavaScript, Perl, Python usw.). Diese Eigenschaften machen JSON zu einer idealen Datenaustauschsprache. Es ist für Menschen leicht zu lesen und zu schreiben, und es ist auch für Maschinen leicht zu analysieren und zu generieren (wird im Allgemeinen zur Erhöhung der Netzwerkübertragungsraten verwendet).
JSON besteht in Python aus einer Liste bzw. einem Diktat.
Dies sind zwei Module für die Serialisierung:
json: wird zum Konvertieren zwischen Strings und Python-Datentypen verwendet
pickle: wird für Python-spezifische Typen verwendet. Konvertieren zwischen und Python-Datentypen
Das Json-Modul bietet vier Funktionen: Dumps, Dump, Loads, Load
Das Pickle-Modul bietet vier Funktionen: Dumps, Dump, Loads, Load
JSON Dumps konvertiert die Datentyp in einen String-Dump konvertiert den Datentyp in einen String und speichert ihn in der Datei. Lädt den String in einen Datentyp um. Load öffnet die Datei und konvertiert sie von einem String in einen Datentyp.
Json kann austauschen Daten zwischen verschiedenen Sprachen, während Pickle nur zwischen Python verwendet wird. JSON kann nur die grundlegendsten Datentypen serialisieren, und JSON kann nur häufig verwendete Datentypen (Listen, Wörterbücher, Listen, Zeichenfolgen, Zahlen usw.) serialisieren, z. B. Datumsformate und Klassenobjekte! Josn kann es nicht. Pickle kann alle Datentypen serialisieren, einschließlich Klassen und Funktionen.
Beispiel:
dumps: Wörterbuch in Python in String konvertieren
import json test_dict = {'bigberg': [7600, {1: [['iPhone', 6300], ['Bike', 800], ['shirt', 300]]}]} print(test_dict) print(type(test_dict)) #dumps 将数据转换成字符串 json_str = json.dumps(test_dict) print(json_str) print(type(json_str))
loads: String konvertieren zum Wörterbuch
new_dict = json.loads(json_str) print(new_dict) print(type(new_dict))
dump: Daten in JSON-Datei schreiben
with open("../config/record.json","w") as f: json.dump(new_dict,f) print("加载入文件完成...")
load: Datei öffnen und konvertieren Sie die Zeichenfolge in den Datentyp
with open("../config/record.json",'r') as load_f: load_dict = json.load(load_f) print(load_dict) load_dict['smallberg'] = [8200,{1:[['Python',81],['shirt',300]]}] print(load_dict) with open("../config/record.json","w") as dump_f: json.dump(load_dict,dump_f)
Das obige ist der detaillierte Inhalt vonPython-Anweisungen zum Lesen und Schreiben von JSON-Dateien. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

PDF-Dateien sind für ihre plattformübergreifende Kompatibilität beliebt, wobei Inhalte und Layout für Betriebssysteme, Lesegeräte und Software konsistent sind. Im Gegensatz zu Python Processing -Klartextdateien sind PDF -Dateien jedoch binäre Dateien mit komplexeren Strukturen und enthalten Elemente wie Schriftarten, Farben und Bilder. Glücklicherweise ist es nicht schwierig, PDF -Dateien mit Pythons externen Modulen zu verarbeiten. In diesem Artikel wird das PYPDF2 -Modul verwendet, um zu demonstrieren, wie Sie eine PDF -Datei öffnen, eine Seite ausdrucken und Text extrahieren. Die Erstellung und Bearbeitung von PDF -Dateien finden Sie in einem weiteren Tutorial von mir. Vorbereitung Der Kern liegt in der Verwendung von externem Modul PYPDF2. Installieren Sie es zunächst mit PIP: pip ist p

Dieses Tutorial zeigt, wie man Redis Caching nutzt, um die Leistung von Python -Anwendungen zu steigern, insbesondere innerhalb eines Django -Frameworks. Wir werden Redis -Installation, Django -Konfiguration und Leistungsvergleiche abdecken, um den Vorteil hervorzuheben

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete
